Quadric-based simplification in any dimension
We present a novel generalization of the quadric error metric used in surface simplification that can be used for simplifying simplicial complexes of any type embedded in Euclidean spaces of any dimension. We demonstrate that our generalized simplification system can produce high quality approximati...
Gespeichert in:
Veröffentlicht in: | ACM transactions on graphics 2005-04, Vol.24 (2), p.209-239 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present a novel generalization of the quadric error metric used in surface simplification that can be used for simplifying simplicial complexes of any type embedded in Euclidean spaces of any dimension. We demonstrate that our generalized simplification system can produce high quality approximations of plane and space curves, triangulated surfaces, tetrahedralized volume data, and simplicial complexes of mixed type. Our method is both efficient and easy to implement. It is capable of processing complexes of arbitrary topology, including nonmanifolds, and can preserve intricate boundaries. |
---|---|
ISSN: | 0730-0301 1557-7368 |
DOI: | 10.1145/1061347.1061350 |