Quadric-based simplification in any dimension

We present a novel generalization of the quadric error metric used in surface simplification that can be used for simplifying simplicial complexes of any type embedded in Euclidean spaces of any dimension. We demonstrate that our generalized simplification system can produce high quality approximati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACM transactions on graphics 2005-04, Vol.24 (2), p.209-239
Hauptverfasser: Garland, Michael, Zhou, Yuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a novel generalization of the quadric error metric used in surface simplification that can be used for simplifying simplicial complexes of any type embedded in Euclidean spaces of any dimension. We demonstrate that our generalized simplification system can produce high quality approximations of plane and space curves, triangulated surfaces, tetrahedralized volume data, and simplicial complexes of mixed type. Our method is both efficient and easy to implement. It is capable of processing complexes of arbitrary topology, including nonmanifolds, and can preserve intricate boundaries.
ISSN:0730-0301
1557-7368
DOI:10.1145/1061347.1061350