Optimizing Statistical Character Recognition Using Evolutionary Strategies to Recognize Aircraft Tail Numbers
The design of statistical classification systems for optical character recognition (OCR) is a cumbersome task. This paper proposes a method using evolutionary strategies (ES) to evolve and upgrade the set of parameters in an OCR system. This OCR is applied to identify the tail number of aircrafts mo...
Gespeichert in:
Veröffentlicht in: | EURASIP Journal on Applied Signal Processing 2004-07, Vol.2004 (8), p.1125-1134, Article 968972 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The design of statistical classification systems for optical character recognition (OCR) is a cumbersome task. This paper proposes a method using evolutionary strategies (ES) to evolve and upgrade the set of parameters in an OCR system. This OCR is applied to identify the tail number of aircrafts moving on the airport. The proposed approach is discussed and some results are obtained using a benchmark data set. This research demonstrates the successful application of ES to a difficult, noisy, and real-world problem. |
---|---|
ISSN: | 1687-6180 1687-6172 1110-8657 1687-6180 |
DOI: | 10.1155/S1110865704312084 |