Optimizing Statistical Character Recognition Using Evolutionary Strategies to Recognize Aircraft Tail Numbers

The design of statistical classification systems for optical character recognition (OCR) is a cumbersome task. This paper proposes a method using evolutionary strategies (ES) to evolve and upgrade the set of parameters in an OCR system. This OCR is applied to identify the tail number of aircrafts mo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:EURASIP Journal on Applied Signal Processing 2004-07, Vol.2004 (8), p.1125-1134, Article 968972
Hauptverfasser: Berlanga, Antonio, Besada, Juan A, Herrero, Jesus Garcia, Molina, Jose M, Portillo, Javier I, Casar, Jose R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The design of statistical classification systems for optical character recognition (OCR) is a cumbersome task. This paper proposes a method using evolutionary strategies (ES) to evolve and upgrade the set of parameters in an OCR system. This OCR is applied to identify the tail number of aircrafts moving on the airport. The proposed approach is discussed and some results are obtained using a benchmark data set. This research demonstrates the successful application of ES to a difficult, noisy, and real-world problem.
ISSN:1687-6180
1687-6172
1110-8657
1687-6180
DOI:10.1155/S1110865704312084