Optimizing time-frequency kernels for classification
In many pattern recognition applications, features are traditionally extracted from standard time-frequency representations (TFRs). This assumes that the implicit smoothing of, say, a spectrogram is appropriate for the classification task. Making such assumptions may degrade classification performan...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on signal processing 2001-03, Vol.49 (3), p.485-496 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In many pattern recognition applications, features are traditionally extracted from standard time-frequency representations (TFRs). This assumes that the implicit smoothing of, say, a spectrogram is appropriate for the classification task. Making such assumptions may degrade classification performance. In general, ana time-frequency classification technique that uses a singular quadratic TFR (e.g., the spectrogram) as a source of features will never surpass the performance of the same technique using a regular quadratic TFR (e,g., Rihaczek or Wigner-Ville). Any TFR that is not regular is said to be singular. Use of a singular quadratic TFR implicitly discards information without explicitly determining if it is germane to the classification task. We propose smoothing regular quadratic TFRs to retain only that information that is essential for classification. We call the resulting quadratic TFRs class-dependent TFRs. This approach makes no a priori assumptions about the amount and type of time-frequency smoothing required for classification. The performance of our approach is demonstrated on simulated and real data. The simulated study indicates that the performance can approach the Bayes optimal classifier. The real-world pilot studies involved helicopter fault diagnosis and radar transmitter identification. |
---|---|
ISSN: | 1053-587X 1941-0476 |
DOI: | 10.1109/78.905863 |