Optimizing the performance of a relational algebra database interface

An approach for implementing a “smart” interface to support a relational view of data is proposed. The basic idea is to employ automatic programming techniques so that the interface analyzes and efficiently refines the high level query specification supplied by the user. A relational algebra interfa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications of the ACM 1975-10, Vol.18 (10), p.568-579
Hauptverfasser: Smith, John Miles, Chang, Philip Yen-Tang
Format: Magazinearticle
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An approach for implementing a “smart” interface to support a relational view of data is proposed. The basic idea is to employ automatic programming techniques so that the interface analyzes and efficiently refines the high level query specification supplied by the user. A relational algebra interface, called SQUIRAL, which was designed using this approach, is described in detail. SQUIRAL seeks to minimize query response time and space utilization by: (1) performing global query optimization, (2) exploiting disjoint and pipelined concurrency, (3) coordinating sort orders in temporary relations, (4) employing directory analysis, and (5) maintaining locality in page references. Algorithms for implementing the operators of E. F. Codd's relational algebra are presented, and a methodology for composing them to optimize the performance of a particular user query is described.
ISSN:0001-0782
1557-7317
DOI:10.1145/361020.361025