Optimization of multiframe target detection schemes

We optimize the performance of multiframe target detection (MFTD) schemes under extended Neyman-Pearson (NP) criteria. Beyond the per-track detection performance for a specific target path in conventional MFTD studies, we optimize the overall detection performance which is averaged over all the pote...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on aerospace and electronic systems 1999-01, Vol.35 (1), p.176-187
Hauptverfasser: Im, Hyoungjun, Kim, Taejeong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We optimize the performance of multiframe target detection (MFTD) schemes under extended Neyman-Pearson (NP) criteria. Beyond the per-track detection performance for a specific target path in conventional MFTD studies, we optimize the overall detection performance which is averaged over all the potential target paths. It is shown that the overall MFTD performance is limited by the mobility of a target and also that optimality of MFTD performance depends on how fully one ran exploit the information about the target dynamics. We assume a single target situation and then present systematic optimization by formulating the MFTD problems as binary composite hypotheses testing problems. The resulting optimal solutions suggest computationally efficient implementation algorithms which are similar to the Viterbi algorithm for trellis search. The optimal performances for some typical types of target dynamics are evaluated via Monte-Carlo simulation.
ISSN:0018-9251
1557-9603
DOI:10.1109/7.745690