Positron lifetime and microstructural characterisation of a-Si:H deposited by low temperature HW-CVD on paper substrates
In thin film electronic applications, the limiting factor, in terms of cost and usability, is generally the substrate material. As a consequence, different materials are being investigated as potential lightweight, inexpensive and flexible substrates. In this respect, we have been the first research...
Gespeichert in:
Veröffentlicht in: | Applied surface science 2006-02, Vol.252 (9), p.3188-3193 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In thin film electronic applications, the limiting factor, in terms of cost and usability, is generally the substrate material. As a consequence, different materials are being investigated as potential lightweight, inexpensive and flexible substrates. In this respect, we have been the first research collaboration to produce silicon-based electronics on paper substrates. Here we present structural characterisation of hydrogenated amorphous silicon (a-Si:H) layers deposited on 80
g
m
−2 wood-free paper, with and without an intermediate metallic interlayer, using low temperature hot wire chemical vapour deposition (HW-CVD). Both pulsed positron beam profiling and X-ray diffraction studies indicate that the growth rate on the uncoated substrate is slightly higher than with prior metallization. There is no evidence of a crystalline phase or voids in the a-Si:H layers. The internal defect structure is similar, with a dominant dangling bond complex of similar size, which has a slightly longer lifetime than in layers grown at higher temperatures on conventional substrates. |
---|---|
ISSN: | 0169-4332 1873-5584 |
DOI: | 10.1016/j.apsusc.2005.08.068 |