A probabilistic analysis of bias optimality in unichain Markov decision processes
Focuses on bias optimality in unichain, finite state, and action-space Markov decision processes. Using relative value functions, we present methods for evaluating optimal bias, this leads to a probabilistic analysis which transforms the original reward problem into a minimum average cost problem. T...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on automatic control 2001-01, Vol.46 (1), p.96-100 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Focuses on bias optimality in unichain, finite state, and action-space Markov decision processes. Using relative value functions, we present methods for evaluating optimal bias, this leads to a probabilistic analysis which transforms the original reward problem into a minimum average cost problem. The result is an explanation of how and why bias implicitly discounts future rewards. |
---|---|
ISSN: | 0018-9286 1558-2523 |
DOI: | 10.1109/9.898698 |