Approximation algorithms for metric facility location and k -Median problems using the primal-dual schema and Lagrangian relaxation

We present approximation algorithms for the metric uncapacitated facility location problem and the metric k -median problem achieving guarantees of 3 and 6 respectively. The distinguishing feature of our algorithms is their low running time: O(m log m ) and O(m log m(L + log ( n ))) respectively, wh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the ACM 2001-03, Vol.48 (2), p.274-296
Hauptverfasser: JAIN, KAMAL, VAZIRANI, VIJAY V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present approximation algorithms for the metric uncapacitated facility location problem and the metric k -median problem achieving guarantees of 3 and 6 respectively. The distinguishing feature of our algorithms is their low running time: O(m log m ) and O(m log m(L + log ( n ))) respectively, where n and m are the total number of vertices and edges in the underlying complete bipartite graph on cities and facilities. The main algorithmic ideas are a new extension of the primal-dual schema and the use of Lagrangian relaxation to derive approximation algorithms.
ISSN:0004-5411
1557-735X
DOI:10.1145/375827.375845