Approximation algorithms for metric facility location and k -Median problems using the primal-dual schema and Lagrangian relaxation
We present approximation algorithms for the metric uncapacitated facility location problem and the metric k -median problem achieving guarantees of 3 and 6 respectively. The distinguishing feature of our algorithms is their low running time: O(m log m ) and O(m log m(L + log ( n ))) respectively, wh...
Gespeichert in:
Veröffentlicht in: | Journal of the ACM 2001-03, Vol.48 (2), p.274-296 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present approximation algorithms for the metric uncapacitated facility location problem and the metric
k
-median problem achieving guarantees of 3 and 6 respectively. The distinguishing feature of our algorithms is their low running time:
O(m
log
m
) and
O(m
log
m(L
+ log (
n
))) respectively, where
n
and
m
are the total number of vertices and edges in the underlying complete bipartite graph on cities and facilities. The main algorithmic ideas are a new extension of the primal-dual schema and the use of Lagrangian relaxation to derive approximation algorithms. |
---|---|
ISSN: | 0004-5411 1557-735X |
DOI: | 10.1145/375827.375845 |