A transformer-based genomic prediction method fused with knowledge-guided module

Genomic prediction (GP) uses single nucleotide polymorphisms (SNPs) to establish associations between markers and phenotypes. Selection of early individuals by genomic estimated breeding value shortens the generation interval and speeds up the breeding process. Recently, methods based on deep learni...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Briefings in bioinformatics 2023-11, Vol.25 (1)
Hauptverfasser: Wu, Cuiling, Zhang, Yiyi, Ying, Zhiwen, Li, Ling, Wang, Jun, Yu, Hui, Zhang, Mengchen, Feng, Xianzhong, Wei, Xinghua, Xu, Xiaogang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Genomic prediction (GP) uses single nucleotide polymorphisms (SNPs) to establish associations between markers and phenotypes. Selection of early individuals by genomic estimated breeding value shortens the generation interval and speeds up the breeding process. Recently, methods based on deep learning (DL) have gained great attention in the field of GP. In this study, we explore the application of Transformer-based structures to GP and develop a novel deep-learning model named GPformer. GPformer obtains a global view by gleaning beneficial information from all relevant SNPs regardless of the physical distance between SNPs. Comprehensive experimental results on five different crop datasets show that GPformer outperforms ridge regression-based linear unbiased prediction (RR-BLUP), support vector regression (SVR), light gradient boosting machine (LightGBM) and deep neural network genomic prediction (DNNGP) in terms of mean absolute error, Pearson's correlation coefficient and the proposed metric consistent index. Furthermore, we introduce a knowledge-guided module (KGM) to extract genome-wide association studies-based information, which is fused into GPformer as prior knowledge. KGM is very flexible and can be plugged into any DL network. Ablation studies of KGM on three datasets illustrate the efficiency of KGM adequately. Moreover, GPformer is robust and stable to hyperparameters and can generalize to each phenotype of every dataset, which is suitable for practical application scenarios.
ISSN:1467-5463
1477-4054
DOI:10.1093/bib/bbad438