An improved supervised and attention mechanism-based U-Net algorithm for retinal vessel segmentation

The segmentation results of retinal blood vessels are crucial for automatically diagnosing ophthalmic diseases such as diabetic retinopathy, hypertension, cardiovascular and cerebrovascular diseases. To improve the accuracy of vessel segmentation and better extract information about small vessels an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers in biology and medicine 2024-01, Vol.168, p.107770-107770, Article 107770
Hauptverfasser: Ma, Zhendi, Li, Xiaobo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 107770
container_issue
container_start_page 107770
container_title Computers in biology and medicine
container_volume 168
creator Ma, Zhendi
Li, Xiaobo
description The segmentation results of retinal blood vessels are crucial for automatically diagnosing ophthalmic diseases such as diabetic retinopathy, hypertension, cardiovascular and cerebrovascular diseases. To improve the accuracy of vessel segmentation and better extract information about small vessels and edges, we introduce the U-Net algorithm with a supervised attention mechanism for retinal vessel segmentation. We achieve this by introducing a decoder fusion module (DFM) in the encoding part, effectively combining different convolutional blocks to extract features comprehensively. Additionally, in the decoding part of U-Net, we propose the context squeeze and excitation (CSE) decoding module to enhance important contextual feature information and the detection of tiny blood vessels. For the final output, we introduce the supervised fusion mechanism (SFM), which combines multiple branches from shallow to deep layers, effectively fusing multi-scale features and capturing information from different levels, fully integrating low-level and high-level features to improve segmentation performance. Our experimental results on the public datasets of DRIVE, STARE, and CHASED_B1 demonstrate the excellent performance of our proposed network.
doi_str_mv 10.1016/j.compbiomed.2023.107770
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2899371264</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2899371264</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-21a70d6fa2250b249713d4bca581f166501ca7f576a3fa9ffdbf31795f4e65d3</originalsourceid><addsrcrecordid>eNpdkU1PxCAQhonRuOvqXzAkXrx0HaCU9rjZ-JUYveiZ0BZ22ZSyQruJ_16a1Zh4mDBhnneY4UUIE1gSIMXdbtl4t6-td7pdUqAsXQsh4ATNSSmqDDjLT9EcgECWl5TP0EWMOwDIgcE5mrESeEEJn6N21WPr9sEfdIvjuNfhYGNKVZ9iGHQ_WN9jp5ut6m10Wa2m6kf2qgesuo0Pdtg6bHzAQQ-2Vx0-6Bh1h6PeuKRWk_4SnRnVRX31cy7Q-8P9-_ope3l7fF6vXrKG5WzIKFEC2sIoSjnUNK8EYW1eN4qXxJCi4EAaJQwXhWJGVca0tWFEVNzkuuAtW6DbY9u0zueo4yCdjY3uOtVrP0ZJy6pigtAiT-jNP3Tnx5DGT1RFgAJUQBJVHqkm-BiDNnIfrFPhSxKQkxFyJ_-MkJMR8mhEkl7_PDDWU-1X-Pvz7BtIUIiM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2910200901</pqid></control><display><type>article</type><title>An improved supervised and attention mechanism-based U-Net algorithm for retinal vessel segmentation</title><source>Access via ScienceDirect (Elsevier)</source><creator>Ma, Zhendi ; Li, Xiaobo</creator><creatorcontrib>Ma, Zhendi ; Li, Xiaobo</creatorcontrib><description>The segmentation results of retinal blood vessels are crucial for automatically diagnosing ophthalmic diseases such as diabetic retinopathy, hypertension, cardiovascular and cerebrovascular diseases. To improve the accuracy of vessel segmentation and better extract information about small vessels and edges, we introduce the U-Net algorithm with a supervised attention mechanism for retinal vessel segmentation. We achieve this by introducing a decoder fusion module (DFM) in the encoding part, effectively combining different convolutional blocks to extract features comprehensively. Additionally, in the decoding part of U-Net, we propose the context squeeze and excitation (CSE) decoding module to enhance important contextual feature information and the detection of tiny blood vessels. For the final output, we introduce the supervised fusion mechanism (SFM), which combines multiple branches from shallow to deep layers, effectively fusing multi-scale features and capturing information from different levels, fully integrating low-level and high-level features to improve segmentation performance. Our experimental results on the public datasets of DRIVE, STARE, and CHASED_B1 demonstrate the excellent performance of our proposed network.</description><identifier>ISSN: 0010-4825</identifier><identifier>EISSN: 1879-0534</identifier><identifier>DOI: 10.1016/j.compbiomed.2023.107770</identifier><identifier>PMID: 38056215</identifier><language>eng</language><publisher>United States: Elsevier Limited</publisher><subject>Algorithms ; Blood vessels ; Cerebrovascular diseases ; Decoding ; Diabetes mellitus ; Eye diseases ; Hypertension ; Information processing ; Modules ; Retina ; Retinopathy ; Segmentation ; Vascular diseases</subject><ispartof>Computers in biology and medicine, 2024-01, Vol.168, p.107770-107770, Article 107770</ispartof><rights>Copyright © 2023 Elsevier Ltd. All rights reserved.</rights><rights>2023. Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-21a70d6fa2250b249713d4bca581f166501ca7f576a3fa9ffdbf31795f4e65d3</citedby><cites>FETCH-LOGICAL-c343t-21a70d6fa2250b249713d4bca581f166501ca7f576a3fa9ffdbf31795f4e65d3</cites><orcidid>0000-0003-0607-5567</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27926,27927</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38056215$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ma, Zhendi</creatorcontrib><creatorcontrib>Li, Xiaobo</creatorcontrib><title>An improved supervised and attention mechanism-based U-Net algorithm for retinal vessel segmentation</title><title>Computers in biology and medicine</title><addtitle>Comput Biol Med</addtitle><description>The segmentation results of retinal blood vessels are crucial for automatically diagnosing ophthalmic diseases such as diabetic retinopathy, hypertension, cardiovascular and cerebrovascular diseases. To improve the accuracy of vessel segmentation and better extract information about small vessels and edges, we introduce the U-Net algorithm with a supervised attention mechanism for retinal vessel segmentation. We achieve this by introducing a decoder fusion module (DFM) in the encoding part, effectively combining different convolutional blocks to extract features comprehensively. Additionally, in the decoding part of U-Net, we propose the context squeeze and excitation (CSE) decoding module to enhance important contextual feature information and the detection of tiny blood vessels. For the final output, we introduce the supervised fusion mechanism (SFM), which combines multiple branches from shallow to deep layers, effectively fusing multi-scale features and capturing information from different levels, fully integrating low-level and high-level features to improve segmentation performance. Our experimental results on the public datasets of DRIVE, STARE, and CHASED_B1 demonstrate the excellent performance of our proposed network.</description><subject>Algorithms</subject><subject>Blood vessels</subject><subject>Cerebrovascular diseases</subject><subject>Decoding</subject><subject>Diabetes mellitus</subject><subject>Eye diseases</subject><subject>Hypertension</subject><subject>Information processing</subject><subject>Modules</subject><subject>Retina</subject><subject>Retinopathy</subject><subject>Segmentation</subject><subject>Vascular diseases</subject><issn>0010-4825</issn><issn>1879-0534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkU1PxCAQhonRuOvqXzAkXrx0HaCU9rjZ-JUYveiZ0BZ22ZSyQruJ_16a1Zh4mDBhnneY4UUIE1gSIMXdbtl4t6-td7pdUqAsXQsh4ATNSSmqDDjLT9EcgECWl5TP0EWMOwDIgcE5mrESeEEJn6N21WPr9sEfdIvjuNfhYGNKVZ9iGHQ_WN9jp5ut6m10Wa2m6kf2qgesuo0Pdtg6bHzAQQ-2Vx0-6Bh1h6PeuKRWk_4SnRnVRX31cy7Q-8P9-_ope3l7fF6vXrKG5WzIKFEC2sIoSjnUNK8EYW1eN4qXxJCi4EAaJQwXhWJGVca0tWFEVNzkuuAtW6DbY9u0zueo4yCdjY3uOtVrP0ZJy6pigtAiT-jNP3Tnx5DGT1RFgAJUQBJVHqkm-BiDNnIfrFPhSxKQkxFyJ_-MkJMR8mhEkl7_PDDWU-1X-Pvz7BtIUIiM</recordid><startdate>202401</startdate><enddate>202401</enddate><creator>Ma, Zhendi</creator><creator>Li, Xiaobo</creator><general>Elsevier Limited</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>K9.</scope><scope>M7Z</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0607-5567</orcidid></search><sort><creationdate>202401</creationdate><title>An improved supervised and attention mechanism-based U-Net algorithm for retinal vessel segmentation</title><author>Ma, Zhendi ; Li, Xiaobo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-21a70d6fa2250b249713d4bca581f166501ca7f576a3fa9ffdbf31795f4e65d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Blood vessels</topic><topic>Cerebrovascular diseases</topic><topic>Decoding</topic><topic>Diabetes mellitus</topic><topic>Eye diseases</topic><topic>Hypertension</topic><topic>Information processing</topic><topic>Modules</topic><topic>Retina</topic><topic>Retinopathy</topic><topic>Segmentation</topic><topic>Vascular diseases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Zhendi</creatorcontrib><creatorcontrib>Li, Xiaobo</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biochemistry Abstracts 1</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Computers in biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Zhendi</au><au>Li, Xiaobo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An improved supervised and attention mechanism-based U-Net algorithm for retinal vessel segmentation</atitle><jtitle>Computers in biology and medicine</jtitle><addtitle>Comput Biol Med</addtitle><date>2024-01</date><risdate>2024</risdate><volume>168</volume><spage>107770</spage><epage>107770</epage><pages>107770-107770</pages><artnum>107770</artnum><issn>0010-4825</issn><eissn>1879-0534</eissn><abstract>The segmentation results of retinal blood vessels are crucial for automatically diagnosing ophthalmic diseases such as diabetic retinopathy, hypertension, cardiovascular and cerebrovascular diseases. To improve the accuracy of vessel segmentation and better extract information about small vessels and edges, we introduce the U-Net algorithm with a supervised attention mechanism for retinal vessel segmentation. We achieve this by introducing a decoder fusion module (DFM) in the encoding part, effectively combining different convolutional blocks to extract features comprehensively. Additionally, in the decoding part of U-Net, we propose the context squeeze and excitation (CSE) decoding module to enhance important contextual feature information and the detection of tiny blood vessels. For the final output, we introduce the supervised fusion mechanism (SFM), which combines multiple branches from shallow to deep layers, effectively fusing multi-scale features and capturing information from different levels, fully integrating low-level and high-level features to improve segmentation performance. Our experimental results on the public datasets of DRIVE, STARE, and CHASED_B1 demonstrate the excellent performance of our proposed network.</abstract><cop>United States</cop><pub>Elsevier Limited</pub><pmid>38056215</pmid><doi>10.1016/j.compbiomed.2023.107770</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-0607-5567</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0010-4825
ispartof Computers in biology and medicine, 2024-01, Vol.168, p.107770-107770, Article 107770
issn 0010-4825
1879-0534
language eng
recordid cdi_proquest_miscellaneous_2899371264
source Access via ScienceDirect (Elsevier)
subjects Algorithms
Blood vessels
Cerebrovascular diseases
Decoding
Diabetes mellitus
Eye diseases
Hypertension
Information processing
Modules
Retina
Retinopathy
Segmentation
Vascular diseases
title An improved supervised and attention mechanism-based U-Net algorithm for retinal vessel segmentation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T20%3A56%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20improved%20supervised%20and%20attention%20mechanism-based%20U-Net%20algorithm%20for%20retinal%20vessel%20segmentation&rft.jtitle=Computers%20in%20biology%20and%20medicine&rft.au=Ma,%20Zhendi&rft.date=2024-01&rft.volume=168&rft.spage=107770&rft.epage=107770&rft.pages=107770-107770&rft.artnum=107770&rft.issn=0010-4825&rft.eissn=1879-0534&rft_id=info:doi/10.1016/j.compbiomed.2023.107770&rft_dat=%3Cproquest_cross%3E2899371264%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2910200901&rft_id=info:pmid/38056215&rfr_iscdi=true