An improved supervised and attention mechanism-based U-Net algorithm for retinal vessel segmentation

The segmentation results of retinal blood vessels are crucial for automatically diagnosing ophthalmic diseases such as diabetic retinopathy, hypertension, cardiovascular and cerebrovascular diseases. To improve the accuracy of vessel segmentation and better extract information about small vessels an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers in biology and medicine 2024-01, Vol.168, p.107770-107770, Article 107770
Hauptverfasser: Ma, Zhendi, Li, Xiaobo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The segmentation results of retinal blood vessels are crucial for automatically diagnosing ophthalmic diseases such as diabetic retinopathy, hypertension, cardiovascular and cerebrovascular diseases. To improve the accuracy of vessel segmentation and better extract information about small vessels and edges, we introduce the U-Net algorithm with a supervised attention mechanism for retinal vessel segmentation. We achieve this by introducing a decoder fusion module (DFM) in the encoding part, effectively combining different convolutional blocks to extract features comprehensively. Additionally, in the decoding part of U-Net, we propose the context squeeze and excitation (CSE) decoding module to enhance important contextual feature information and the detection of tiny blood vessels. For the final output, we introduce the supervised fusion mechanism (SFM), which combines multiple branches from shallow to deep layers, effectively fusing multi-scale features and capturing information from different levels, fully integrating low-level and high-level features to improve segmentation performance. Our experimental results on the public datasets of DRIVE, STARE, and CHASED_B1 demonstrate the excellent performance of our proposed network.
ISSN:0010-4825
1879-0534
DOI:10.1016/j.compbiomed.2023.107770