GL13K-modified titanium regulates osteogenic differentiation via the NF-κB pathway
The osteoimmune response plays a crucial regulatory role in the osseointegration of dental implants. Previous studies found the antimicrobial peptide coating (GL13K) could activate the immunomodulatory potential of macrophages (Raw 264.7) and promote osteogenic differentiation of bone marrow mesench...
Gespeichert in:
Veröffentlicht in: | International immunopharmacology 2024-01, Vol.126, p.111279-111279, Article 111279 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The osteoimmune response plays a crucial regulatory role in the osseointegration of dental implants. Previous studies found the antimicrobial peptide coating (GL13K) could activate the immunomodulatory potential of macrophages (Raw 264.7) and promote osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). To further investigate the mechanism of interaction between immunomodulation and differentiation, a co-culture model of the representative cells (Raw 264.7 and BMSCs) was constructed to mimic the immune microenvironment. In this system, GL13K coating of titanium implant effectively inhibited the polarization of the inflammatory M1 type and promoted the polarization of the anti-inflammatory M2 type. Furthermore, the inhibited NF-κB signaling pathway and Mip-2 gene expression were found and validated by bioinformatics analysis and virus-induced gene silencing, which significantly affected the tissue repair process. It can be concluded that the GL13K coating had the potential to establish a localized immune microenvironment conducive to osteogenic differentiation through cellular interactions. Subsequent investigations would be dedicated to a thorough examination of the osseointegration effects of GL13K coating. |
---|---|
ISSN: | 1567-5769 1878-1705 |
DOI: | 10.1016/j.intimp.2023.111279 |