Regulating Enzyme Catalysis by Tailored Silver Nanocrystals Fabricated with Holigarna arnottiana—Synthesis, Characterization, and Performance Optimization

Modification of catalytic expression of enzymes and regulating their in vivo activity are the goals of novel treatment strategies. A green synthetic nanostructured silver with potent trypsin inhibitory properties has not yet been developed, despite the fact that silver nanoparticles possess unique p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biological trace element research 2024-09, Vol.202 (9), p.4240-4259
Hauptverfasser: George, Neethu, Gayathri Devi, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Modification of catalytic expression of enzymes and regulating their in vivo activity are the goals of novel treatment strategies. A green synthetic nanostructured silver with potent trypsin inhibitory properties has not yet been developed, despite the fact that silver nanoparticles possess unique properties that allow them to efficiently block enzymes. The present study demonstrates for the first time a facile, safe, economic, and eco-friendly synthetic route for silver nanoparticles using an aqueous extract of Holigarna arnottiana bark engineered to interact with trypsin and hinder its activity effectively. The studies carried out to examine the interaction between these biofabricated AgNPs (HaAgNPs) and trypsin by UV-visible spectrophotometry and FTIR spectroscopy suggest that the formation of trypsin-HaAgNP complex is responsible for diminishing the catalytic efficiency of trypsin. In vivo studies on Aedes aegypti larval serum support these instrumental results of HaAgNP-induced trypsin inhibition and proves its application as a biopesticide. It is noteworthy that the bioengineered HaAgNPs were also found to have good inhibition potential against pepsin and urease as well. A variety of methods have been employed to characterize the synthesized biocompatible HaAgNPs and it possesses a characteristic absorption maximum of 420 nm. Their shelf life of above 7 years is noticeable, since none of the reported green synthesized AgNPs possess a shelf life of more than 1 year. Altogether, this work demonstrates that biofabricated HaAgNPs are multifunctional and cost-resilient biological tools that can be used as enzyme regulators possessing antioxidant, antimicrobial, and insecticidal features.
ISSN:0163-4984
1559-0720
1559-0720
DOI:10.1007/s12011-023-03981-w