Enhanced Thermostability of Geobacillus stearothermophilus α-Amylase by Rational Design of Disulfide Bond and Application in Corn Starch Liquefaction and Bread Quality Improvement

α-Amylase (EC 3.2.1.1) from (generally recognized as safe) exhibited thermal inactivation, hampering its further application in starch-based industries. To address this, we performed structural analyses based on molecular dynamics targeting the flexible regions of α-amylase. Subsequently, we rationa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of agricultural and food chemistry 2023-12, Vol.71 (48), p.18928-18942
Hauptverfasser: Zhu, Mengyu, Zhai, Wenxin, Song, Runfei, Lin, Lin, Wei, Wei, Wei, Dongzhi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:α-Amylase (EC 3.2.1.1) from (generally recognized as safe) exhibited thermal inactivation, hampering its further application in starch-based industries. To address this, we performed structural analyses based on molecular dynamics targeting the flexible regions of α-amylase. Subsequently, we rationally designed a thermostable mutant, AmyS1, by introducing disulfide bonds to stabilize the flexible regions. AmyS1 showed excellent thermostability without any stability-activity trade-off, giving a 40-fold longer (1359 min) at 90 °C. Thermostability mechanism analysis revealed that the introduction of disulfide bonds in AmyS1 refined weak spots and reconfigured the protein's force network. Moreover, AmyS1 exhibited improved pH compatibility and enhanced corn starch liquefaction at 100 °C with a 5.1-fold increased product concentration. Baking tests confirmed that AmyS1 enhanced bread quality and extended the shelf life. Therefore, mutant AmyS1 is a robust candidate for the starch-based industry.
ISSN:0021-8561
1520-5118
DOI:10.1021/acs.jafc.3c06761