Implications of capacity-limited, generative models for human vision
Although discriminative deep neural networks are currently dominant in cognitive modeling, we suggest that capacity-limited, generative models are a promising avenue for future work. Generative models tend to learn both local and global features of stimuli and, when properly constrained, can learn c...
Gespeichert in:
Veröffentlicht in: | The Behavioral and brain sciences 2023-12, Vol.46, p.e391-e391, Article e391 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e391 |
---|---|
container_issue | |
container_start_page | e391 |
container_title | The Behavioral and brain sciences |
container_volume | 46 |
creator | German, Joseph Scott Jacobs, Robert A. |
description | Although discriminative deep neural networks are currently dominant in cognitive modeling, we suggest that capacity-limited, generative models are a promising avenue for future work. Generative models tend to learn both local and global features of stimuli and, when properly constrained, can learn componential representations and response biases found in people's behaviors. |
doi_str_mv | 10.1017/S0140525X23001772 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2898955959</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0140525X23001772</cupid><sourcerecordid>2898281585</sourcerecordid><originalsourceid>FETCH-LOGICAL-c302t-b843ba039300357fc1480b1271d6ce2d47570691f429788165f36e87459c331e3</originalsourceid><addsrcrecordid>eNp1kE9LxDAUxIMouK5-AG8FLx6s5iVNkxxl_bew4EEFbyVN0zVL29SkXdhvb9ZdEBRPj8f8ZhgGoXPA14CB37xgyDAj7J1QHH9ODtAEslymIAg7RJOtnG71Y3QSwgpjzDImJ-hu3vaN1WqwrguJqxOteqXtsEkb29rBVFfJ0nTGR2BtktZVpglJ7XzyMbaqS9Y2ROMpOqpVE8zZ_k7R28P96-wpXTw_zme3i1RTTIa0FBktFaYyVqSM1xoygUsgHKpcG1JlnHGcS6gzIrkQkLOa5kbwWFRTCoZO0eUut_fuczRhKFobtGka1Rk3hoIIKSRjksmIXvxCV270XWz3TREBTLBIwY7S3oXgTV303rbKbwrAxXbX4s-u0UP3HtWW3lZL8xP9v-sLHl13rQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2898281585</pqid></control><display><type>article</type><title>Implications of capacity-limited, generative models for human vision</title><source>Cambridge University Press Journals Complete</source><creator>German, Joseph Scott ; Jacobs, Robert A.</creator><creatorcontrib>German, Joseph Scott ; Jacobs, Robert A.</creatorcontrib><description>Although discriminative deep neural networks are currently dominant in cognitive modeling, we suggest that capacity-limited, generative models are a promising avenue for future work. Generative models tend to learn both local and global features of stimuli and, when properly constrained, can learn componential representations and response biases found in people's behaviors.</description><identifier>ISSN: 0140-525X</identifier><identifier>EISSN: 1469-1825</identifier><identifier>DOI: 10.1017/S0140525X23001772</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Cognition & reasoning ; Cognitive ability ; Decision theory ; Machine learning ; Memory ; Neural networks ; Open Peer Commentary</subject><ispartof>The Behavioral and brain sciences, 2023-12, Vol.46, p.e391-e391, Article e391</ispartof><rights>Copyright © The Author(s), 2023. Published by Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c302t-b843ba039300357fc1480b1271d6ce2d47570691f429788165f36e87459c331e3</cites><orcidid>0000-0001-6607-908X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0140525X23001772/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids></links><search><creatorcontrib>German, Joseph Scott</creatorcontrib><creatorcontrib>Jacobs, Robert A.</creatorcontrib><title>Implications of capacity-limited, generative models for human vision</title><title>The Behavioral and brain sciences</title><addtitle>Behav Brain Sci</addtitle><description>Although discriminative deep neural networks are currently dominant in cognitive modeling, we suggest that capacity-limited, generative models are a promising avenue for future work. Generative models tend to learn both local and global features of stimuli and, when properly constrained, can learn componential representations and response biases found in people's behaviors.</description><subject>Cognition & reasoning</subject><subject>Cognitive ability</subject><subject>Decision theory</subject><subject>Machine learning</subject><subject>Memory</subject><subject>Neural networks</subject><subject>Open Peer Commentary</subject><issn>0140-525X</issn><issn>1469-1825</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kE9LxDAUxIMouK5-AG8FLx6s5iVNkxxl_bew4EEFbyVN0zVL29SkXdhvb9ZdEBRPj8f8ZhgGoXPA14CB37xgyDAj7J1QHH9ODtAEslymIAg7RJOtnG71Y3QSwgpjzDImJ-hu3vaN1WqwrguJqxOteqXtsEkb29rBVFfJ0nTGR2BtktZVpglJ7XzyMbaqS9Y2ROMpOqpVE8zZ_k7R28P96-wpXTw_zme3i1RTTIa0FBktFaYyVqSM1xoygUsgHKpcG1JlnHGcS6gzIrkQkLOa5kbwWFRTCoZO0eUut_fuczRhKFobtGka1Rk3hoIIKSRjksmIXvxCV270XWz3TREBTLBIwY7S3oXgTV303rbKbwrAxXbX4s-u0UP3HtWW3lZL8xP9v-sLHl13rQ</recordid><startdate>20231206</startdate><enddate>20231206</enddate><creator>German, Joseph Scott</creator><creator>Jacobs, Robert A.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6607-908X</orcidid></search><sort><creationdate>20231206</creationdate><title>Implications of capacity-limited, generative models for human vision</title><author>German, Joseph Scott ; Jacobs, Robert A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c302t-b843ba039300357fc1480b1271d6ce2d47570691f429788165f36e87459c331e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cognition & reasoning</topic><topic>Cognitive ability</topic><topic>Decision theory</topic><topic>Machine learning</topic><topic>Memory</topic><topic>Neural networks</topic><topic>Open Peer Commentary</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>German, Joseph Scott</creatorcontrib><creatorcontrib>Jacobs, Robert A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>The Behavioral and brain sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>German, Joseph Scott</au><au>Jacobs, Robert A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Implications of capacity-limited, generative models for human vision</atitle><jtitle>The Behavioral and brain sciences</jtitle><addtitle>Behav Brain Sci</addtitle><date>2023-12-06</date><risdate>2023</risdate><volume>46</volume><spage>e391</spage><epage>e391</epage><pages>e391-e391</pages><artnum>e391</artnum><issn>0140-525X</issn><eissn>1469-1825</eissn><abstract>Although discriminative deep neural networks are currently dominant in cognitive modeling, we suggest that capacity-limited, generative models are a promising avenue for future work. Generative models tend to learn both local and global features of stimuli and, when properly constrained, can learn componential representations and response biases found in people's behaviors.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1017/S0140525X23001772</doi><tpages>2</tpages><orcidid>https://orcid.org/0000-0001-6607-908X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0140-525X |
ispartof | The Behavioral and brain sciences, 2023-12, Vol.46, p.e391-e391, Article e391 |
issn | 0140-525X 1469-1825 |
language | eng |
recordid | cdi_proquest_miscellaneous_2898955959 |
source | Cambridge University Press Journals Complete |
subjects | Cognition & reasoning Cognitive ability Decision theory Machine learning Memory Neural networks Open Peer Commentary |
title | Implications of capacity-limited, generative models for human vision |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T00%3A20%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Implications%20of%20capacity-limited,%20generative%20models%20for%20human%20vision&rft.jtitle=The%20Behavioral%20and%20brain%20sciences&rft.au=German,%20Joseph%20Scott&rft.date=2023-12-06&rft.volume=46&rft.spage=e391&rft.epage=e391&rft.pages=e391-e391&rft.artnum=e391&rft.issn=0140-525X&rft.eissn=1469-1825&rft_id=info:doi/10.1017/S0140525X23001772&rft_dat=%3Cproquest_cross%3E2898281585%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2898281585&rft_id=info:pmid/&rft_cupid=10_1017_S0140525X23001772&rfr_iscdi=true |