Implications of capacity-limited, generative models for human vision

Although discriminative deep neural networks are currently dominant in cognitive modeling, we suggest that capacity-limited, generative models are a promising avenue for future work. Generative models tend to learn both local and global features of stimuli and, when properly constrained, can learn c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Behavioral and brain sciences 2023-12, Vol.46, p.e391-e391, Article e391
Hauptverfasser: German, Joseph Scott, Jacobs, Robert A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e391
container_issue
container_start_page e391
container_title The Behavioral and brain sciences
container_volume 46
creator German, Joseph Scott
Jacobs, Robert A.
description Although discriminative deep neural networks are currently dominant in cognitive modeling, we suggest that capacity-limited, generative models are a promising avenue for future work. Generative models tend to learn both local and global features of stimuli and, when properly constrained, can learn componential representations and response biases found in people's behaviors.
doi_str_mv 10.1017/S0140525X23001772
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2898955959</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0140525X23001772</cupid><sourcerecordid>2898281585</sourcerecordid><originalsourceid>FETCH-LOGICAL-c302t-b843ba039300357fc1480b1271d6ce2d47570691f429788165f36e87459c331e3</originalsourceid><addsrcrecordid>eNp1kE9LxDAUxIMouK5-AG8FLx6s5iVNkxxl_bew4EEFbyVN0zVL29SkXdhvb9ZdEBRPj8f8ZhgGoXPA14CB37xgyDAj7J1QHH9ODtAEslymIAg7RJOtnG71Y3QSwgpjzDImJ-hu3vaN1WqwrguJqxOteqXtsEkb29rBVFfJ0nTGR2BtktZVpglJ7XzyMbaqS9Y2ROMpOqpVE8zZ_k7R28P96-wpXTw_zme3i1RTTIa0FBktFaYyVqSM1xoygUsgHKpcG1JlnHGcS6gzIrkQkLOa5kbwWFRTCoZO0eUut_fuczRhKFobtGka1Rk3hoIIKSRjksmIXvxCV270XWz3TREBTLBIwY7S3oXgTV303rbKbwrAxXbX4s-u0UP3HtWW3lZL8xP9v-sLHl13rQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2898281585</pqid></control><display><type>article</type><title>Implications of capacity-limited, generative models for human vision</title><source>Cambridge University Press Journals Complete</source><creator>German, Joseph Scott ; Jacobs, Robert A.</creator><creatorcontrib>German, Joseph Scott ; Jacobs, Robert A.</creatorcontrib><description>Although discriminative deep neural networks are currently dominant in cognitive modeling, we suggest that capacity-limited, generative models are a promising avenue for future work. Generative models tend to learn both local and global features of stimuli and, when properly constrained, can learn componential representations and response biases found in people's behaviors.</description><identifier>ISSN: 0140-525X</identifier><identifier>EISSN: 1469-1825</identifier><identifier>DOI: 10.1017/S0140525X23001772</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Cognition &amp; reasoning ; Cognitive ability ; Decision theory ; Machine learning ; Memory ; Neural networks ; Open Peer Commentary</subject><ispartof>The Behavioral and brain sciences, 2023-12, Vol.46, p.e391-e391, Article e391</ispartof><rights>Copyright © The Author(s), 2023. Published by Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c302t-b843ba039300357fc1480b1271d6ce2d47570691f429788165f36e87459c331e3</cites><orcidid>0000-0001-6607-908X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0140525X23001772/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids></links><search><creatorcontrib>German, Joseph Scott</creatorcontrib><creatorcontrib>Jacobs, Robert A.</creatorcontrib><title>Implications of capacity-limited, generative models for human vision</title><title>The Behavioral and brain sciences</title><addtitle>Behav Brain Sci</addtitle><description>Although discriminative deep neural networks are currently dominant in cognitive modeling, we suggest that capacity-limited, generative models are a promising avenue for future work. Generative models tend to learn both local and global features of stimuli and, when properly constrained, can learn componential representations and response biases found in people's behaviors.</description><subject>Cognition &amp; reasoning</subject><subject>Cognitive ability</subject><subject>Decision theory</subject><subject>Machine learning</subject><subject>Memory</subject><subject>Neural networks</subject><subject>Open Peer Commentary</subject><issn>0140-525X</issn><issn>1469-1825</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kE9LxDAUxIMouK5-AG8FLx6s5iVNkxxl_bew4EEFbyVN0zVL29SkXdhvb9ZdEBRPj8f8ZhgGoXPA14CB37xgyDAj7J1QHH9ODtAEslymIAg7RJOtnG71Y3QSwgpjzDImJ-hu3vaN1WqwrguJqxOteqXtsEkb29rBVFfJ0nTGR2BtktZVpglJ7XzyMbaqS9Y2ROMpOqpVE8zZ_k7R28P96-wpXTw_zme3i1RTTIa0FBktFaYyVqSM1xoygUsgHKpcG1JlnHGcS6gzIrkQkLOa5kbwWFRTCoZO0eUut_fuczRhKFobtGka1Rk3hoIIKSRjksmIXvxCV270XWz3TREBTLBIwY7S3oXgTV303rbKbwrAxXbX4s-u0UP3HtWW3lZL8xP9v-sLHl13rQ</recordid><startdate>20231206</startdate><enddate>20231206</enddate><creator>German, Joseph Scott</creator><creator>Jacobs, Robert A.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6607-908X</orcidid></search><sort><creationdate>20231206</creationdate><title>Implications of capacity-limited, generative models for human vision</title><author>German, Joseph Scott ; Jacobs, Robert A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c302t-b843ba039300357fc1480b1271d6ce2d47570691f429788165f36e87459c331e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cognition &amp; reasoning</topic><topic>Cognitive ability</topic><topic>Decision theory</topic><topic>Machine learning</topic><topic>Memory</topic><topic>Neural networks</topic><topic>Open Peer Commentary</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>German, Joseph Scott</creatorcontrib><creatorcontrib>Jacobs, Robert A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>The Behavioral and brain sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>German, Joseph Scott</au><au>Jacobs, Robert A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Implications of capacity-limited, generative models for human vision</atitle><jtitle>The Behavioral and brain sciences</jtitle><addtitle>Behav Brain Sci</addtitle><date>2023-12-06</date><risdate>2023</risdate><volume>46</volume><spage>e391</spage><epage>e391</epage><pages>e391-e391</pages><artnum>e391</artnum><issn>0140-525X</issn><eissn>1469-1825</eissn><abstract>Although discriminative deep neural networks are currently dominant in cognitive modeling, we suggest that capacity-limited, generative models are a promising avenue for future work. Generative models tend to learn both local and global features of stimuli and, when properly constrained, can learn componential representations and response biases found in people's behaviors.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1017/S0140525X23001772</doi><tpages>2</tpages><orcidid>https://orcid.org/0000-0001-6607-908X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0140-525X
ispartof The Behavioral and brain sciences, 2023-12, Vol.46, p.e391-e391, Article e391
issn 0140-525X
1469-1825
language eng
recordid cdi_proquest_miscellaneous_2898955959
source Cambridge University Press Journals Complete
subjects Cognition & reasoning
Cognitive ability
Decision theory
Machine learning
Memory
Neural networks
Open Peer Commentary
title Implications of capacity-limited, generative models for human vision
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T00%3A20%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Implications%20of%20capacity-limited,%20generative%20models%20for%20human%20vision&rft.jtitle=The%20Behavioral%20and%20brain%20sciences&rft.au=German,%20Joseph%20Scott&rft.date=2023-12-06&rft.volume=46&rft.spage=e391&rft.epage=e391&rft.pages=e391-e391&rft.artnum=e391&rft.issn=0140-525X&rft.eissn=1469-1825&rft_id=info:doi/10.1017/S0140525X23001772&rft_dat=%3Cproquest_cross%3E2898281585%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2898281585&rft_id=info:pmid/&rft_cupid=10_1017_S0140525X23001772&rfr_iscdi=true