Implications of capacity-limited, generative models for human vision

Although discriminative deep neural networks are currently dominant in cognitive modeling, we suggest that capacity-limited, generative models are a promising avenue for future work. Generative models tend to learn both local and global features of stimuli and, when properly constrained, can learn c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Behavioral and brain sciences 2023-12, Vol.46, p.e391-e391, Article e391
Hauptverfasser: German, Joseph Scott, Jacobs, Robert A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Although discriminative deep neural networks are currently dominant in cognitive modeling, we suggest that capacity-limited, generative models are a promising avenue for future work. Generative models tend to learn both local and global features of stimuli and, when properly constrained, can learn componential representations and response biases found in people's behaviors.
ISSN:0140-525X
1469-1825
DOI:10.1017/S0140525X23001772