Implications of capacity-limited, generative models for human vision
Although discriminative deep neural networks are currently dominant in cognitive modeling, we suggest that capacity-limited, generative models are a promising avenue for future work. Generative models tend to learn both local and global features of stimuli and, when properly constrained, can learn c...
Gespeichert in:
Veröffentlicht in: | The Behavioral and brain sciences 2023-12, Vol.46, p.e391-e391, Article e391 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Although discriminative deep neural networks are currently dominant in cognitive modeling, we suggest that capacity-limited, generative models are a promising avenue for future work. Generative models tend to learn both local and global features of stimuli and, when properly constrained, can learn componential representations and response biases found in people's behaviors. |
---|---|
ISSN: | 0140-525X 1469-1825 |
DOI: | 10.1017/S0140525X23001772 |