Data‐Driven Design for Metamaterials and Multiscale Systems: A Review

Metamaterials are artificial materials designed to exhibit effective material parameters that go beyond those found in nature. Composed of unit cells with rich designability that are assembled into multiscale systems, they hold great promise for realizing next‐generation devices with exceptional, of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2024-02, Vol.36 (8), p.e2305254-n/a
Hauptverfasser: Lee, Doksoo, Chen, Wei (Wayne), Wang, Liwei, Chan, Yu‐Chin, Chen, Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 8
container_start_page e2305254
container_title Advanced materials (Weinheim)
container_volume 36
creator Lee, Doksoo
Chen, Wei (Wayne)
Wang, Liwei
Chan, Yu‐Chin
Chen, Wei
description Metamaterials are artificial materials designed to exhibit effective material parameters that go beyond those found in nature. Composed of unit cells with rich designability that are assembled into multiscale systems, they hold great promise for realizing next‐generation devices with exceptional, often exotic, functionalities. However, the vast design space and intricate structure–property relationships pose significant challenges in their design. A compelling paradigm that could bring the full potential of metamaterials to fruition is emerging: data‐driven design. This review provides a holistic overview of this rapidly evolving field, emphasizing the general methodology instead of specific domains and deployment contexts. Existing research is organized into data‐driven modules, encompassing data acquisition, machine learning‐based unit cell design, and data‐driven multiscale optimization. The approaches are further categorized within each module based on shared principles, analyze and compare strengths and applicability, explore connections between different modules, and identify open research questions and opportunities. This review highlights the status and opportunities of data‐driven design for metamaterials and multiscale systems, generally built on data acquisition, unit cell design, and multiscale design. Adopting a design‐centered perspective, the primary approaches of each module that represent common threads and overarching principles are categorized, connections across modules are articulated, and open research questions and opportunities are disclosed.
doi_str_mv 10.1002/adma.202305254
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2898955600</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2898955600</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4134-db7c3f6b5238da52cb399e5c6229106d638aa6810ff4419ab7fc08d5f1e6599e3</originalsourceid><addsrcrecordid>eNqF0MtKxDAUBuAgijOObl1KwY2bjidJk0ncFauj4CB4WYe0PZUOvWjSKrPzEXxGn8TKeAE3rs7mOz8_PyH7FKYUgB3bvLZTBoyDYCLaIGMqGA0j0GKTjEFzEWoZqRHZ8X4JAFqC3CYjrkCA0npM5ont7PvrW-LKZ2yCBH350ARF64IFdra2HbrSVj6wTR4s-qorfWYrDG5XvsPanwRxcIPPJb7skq1icLj3dSfk_vzs7vQivLqeX57GV2EWUR6FeTrLeCFTwbjKrWBZyrVGkUnGNAWZS66slYpCUUQR1TadFRmoXBQUpRgkn5Cjde6ja5969J2ph0pYVbbBtveGKa20EBJgoId_6LLtXTO0M0wzrRSXajao6VplrvXeYWEeXVlbtzIUzOfE5nNi8zPx8HDwFdunNeY__HvTAeg1eCkrXP0TZ-JkEf-GfwBZ4ocL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2929883687</pqid></control><display><type>article</type><title>Data‐Driven Design for Metamaterials and Multiscale Systems: A Review</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Lee, Doksoo ; Chen, Wei (Wayne) ; Wang, Liwei ; Chan, Yu‐Chin ; Chen, Wei</creator><creatorcontrib>Lee, Doksoo ; Chen, Wei (Wayne) ; Wang, Liwei ; Chan, Yu‐Chin ; Chen, Wei</creatorcontrib><description>Metamaterials are artificial materials designed to exhibit effective material parameters that go beyond those found in nature. Composed of unit cells with rich designability that are assembled into multiscale systems, they hold great promise for realizing next‐generation devices with exceptional, often exotic, functionalities. However, the vast design space and intricate structure–property relationships pose significant challenges in their design. A compelling paradigm that could bring the full potential of metamaterials to fruition is emerging: data‐driven design. This review provides a holistic overview of this rapidly evolving field, emphasizing the general methodology instead of specific domains and deployment contexts. Existing research is organized into data‐driven modules, encompassing data acquisition, machine learning‐based unit cell design, and data‐driven multiscale optimization. The approaches are further categorized within each module based on shared principles, analyze and compare strengths and applicability, explore connections between different modules, and identify open research questions and opportunities. This review highlights the status and opportunities of data‐driven design for metamaterials and multiscale systems, generally built on data acquisition, unit cell design, and multiscale design. Adopting a design‐centered perspective, the primary approaches of each module that represent common threads and overarching principles are categorized, connections across modules are articulated, and open research questions and opportunities are disclosed.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202305254</identifier><identifier>PMID: 38050899</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Data acquisition ; data‐driven design ; Design optimization ; Machine learning ; metamaterial ; Metamaterials ; Modules ; multiscale design ; System effectiveness ; topology optimization ; Unit cell</subject><ispartof>Advanced materials (Weinheim), 2024-02, Vol.36 (8), p.e2305254-n/a</ispartof><rights>2023 The Authors. Advanced Materials published by Wiley‐VCH GmbH</rights><rights>2023 The Authors. Advanced Materials published by Wiley-VCH GmbH.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4134-db7c3f6b5238da52cb399e5c6229106d638aa6810ff4419ab7fc08d5f1e6599e3</citedby><cites>FETCH-LOGICAL-c4134-db7c3f6b5238da52cb399e5c6229106d638aa6810ff4419ab7fc08d5f1e6599e3</cites><orcidid>0000-0002-4597-6643 ; 0000-0002-4653-7124 ; 0000-0002-2777-9718</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202305254$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202305254$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38050899$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Doksoo</creatorcontrib><creatorcontrib>Chen, Wei (Wayne)</creatorcontrib><creatorcontrib>Wang, Liwei</creatorcontrib><creatorcontrib>Chan, Yu‐Chin</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><title>Data‐Driven Design for Metamaterials and Multiscale Systems: A Review</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Metamaterials are artificial materials designed to exhibit effective material parameters that go beyond those found in nature. Composed of unit cells with rich designability that are assembled into multiscale systems, they hold great promise for realizing next‐generation devices with exceptional, often exotic, functionalities. However, the vast design space and intricate structure–property relationships pose significant challenges in their design. A compelling paradigm that could bring the full potential of metamaterials to fruition is emerging: data‐driven design. This review provides a holistic overview of this rapidly evolving field, emphasizing the general methodology instead of specific domains and deployment contexts. Existing research is organized into data‐driven modules, encompassing data acquisition, machine learning‐based unit cell design, and data‐driven multiscale optimization. The approaches are further categorized within each module based on shared principles, analyze and compare strengths and applicability, explore connections between different modules, and identify open research questions and opportunities. This review highlights the status and opportunities of data‐driven design for metamaterials and multiscale systems, generally built on data acquisition, unit cell design, and multiscale design. Adopting a design‐centered perspective, the primary approaches of each module that represent common threads and overarching principles are categorized, connections across modules are articulated, and open research questions and opportunities are disclosed.</description><subject>Data acquisition</subject><subject>data‐driven design</subject><subject>Design optimization</subject><subject>Machine learning</subject><subject>metamaterial</subject><subject>Metamaterials</subject><subject>Modules</subject><subject>multiscale design</subject><subject>System effectiveness</subject><subject>topology optimization</subject><subject>Unit cell</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqF0MtKxDAUBuAgijOObl1KwY2bjidJk0ncFauj4CB4WYe0PZUOvWjSKrPzEXxGn8TKeAE3rs7mOz8_PyH7FKYUgB3bvLZTBoyDYCLaIGMqGA0j0GKTjEFzEWoZqRHZ8X4JAFqC3CYjrkCA0npM5ont7PvrW-LKZ2yCBH350ARF64IFdra2HbrSVj6wTR4s-qorfWYrDG5XvsPanwRxcIPPJb7skq1icLj3dSfk_vzs7vQivLqeX57GV2EWUR6FeTrLeCFTwbjKrWBZyrVGkUnGNAWZS66slYpCUUQR1TadFRmoXBQUpRgkn5Cjde6ja5969J2ph0pYVbbBtveGKa20EBJgoId_6LLtXTO0M0wzrRSXajao6VplrvXeYWEeXVlbtzIUzOfE5nNi8zPx8HDwFdunNeY__HvTAeg1eCkrXP0TZ-JkEf-GfwBZ4ocL</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Lee, Doksoo</creator><creator>Chen, Wei (Wayne)</creator><creator>Wang, Liwei</creator><creator>Chan, Yu‐Chin</creator><creator>Chen, Wei</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4597-6643</orcidid><orcidid>https://orcid.org/0000-0002-4653-7124</orcidid><orcidid>https://orcid.org/0000-0002-2777-9718</orcidid></search><sort><creationdate>20240201</creationdate><title>Data‐Driven Design for Metamaterials and Multiscale Systems: A Review</title><author>Lee, Doksoo ; Chen, Wei (Wayne) ; Wang, Liwei ; Chan, Yu‐Chin ; Chen, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4134-db7c3f6b5238da52cb399e5c6229106d638aa6810ff4419ab7fc08d5f1e6599e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Data acquisition</topic><topic>data‐driven design</topic><topic>Design optimization</topic><topic>Machine learning</topic><topic>metamaterial</topic><topic>Metamaterials</topic><topic>Modules</topic><topic>multiscale design</topic><topic>System effectiveness</topic><topic>topology optimization</topic><topic>Unit cell</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Doksoo</creatorcontrib><creatorcontrib>Chen, Wei (Wayne)</creatorcontrib><creatorcontrib>Wang, Liwei</creatorcontrib><creatorcontrib>Chan, Yu‐Chin</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Doksoo</au><au>Chen, Wei (Wayne)</au><au>Wang, Liwei</au><au>Chan, Yu‐Chin</au><au>Chen, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data‐Driven Design for Metamaterials and Multiscale Systems: A Review</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2024-02-01</date><risdate>2024</risdate><volume>36</volume><issue>8</issue><spage>e2305254</spage><epage>n/a</epage><pages>e2305254-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Metamaterials are artificial materials designed to exhibit effective material parameters that go beyond those found in nature. Composed of unit cells with rich designability that are assembled into multiscale systems, they hold great promise for realizing next‐generation devices with exceptional, often exotic, functionalities. However, the vast design space and intricate structure–property relationships pose significant challenges in their design. A compelling paradigm that could bring the full potential of metamaterials to fruition is emerging: data‐driven design. This review provides a holistic overview of this rapidly evolving field, emphasizing the general methodology instead of specific domains and deployment contexts. Existing research is organized into data‐driven modules, encompassing data acquisition, machine learning‐based unit cell design, and data‐driven multiscale optimization. The approaches are further categorized within each module based on shared principles, analyze and compare strengths and applicability, explore connections between different modules, and identify open research questions and opportunities. This review highlights the status and opportunities of data‐driven design for metamaterials and multiscale systems, generally built on data acquisition, unit cell design, and multiscale design. Adopting a design‐centered perspective, the primary approaches of each module that represent common threads and overarching principles are categorized, connections across modules are articulated, and open research questions and opportunities are disclosed.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38050899</pmid><doi>10.1002/adma.202305254</doi><tpages>45</tpages><orcidid>https://orcid.org/0000-0002-4597-6643</orcidid><orcidid>https://orcid.org/0000-0002-4653-7124</orcidid><orcidid>https://orcid.org/0000-0002-2777-9718</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2024-02, Vol.36 (8), p.e2305254-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2898955600
source Wiley Online Library Journals Frontfile Complete
subjects Data acquisition
data‐driven design
Design optimization
Machine learning
metamaterial
Metamaterials
Modules
multiscale design
System effectiveness
topology optimization
Unit cell
title Data‐Driven Design for Metamaterials and Multiscale Systems: A Review
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T07%3A09%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data%E2%80%90Driven%20Design%20for%20Metamaterials%20and%20Multiscale%20Systems:%20A%20Review&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Lee,%20Doksoo&rft.date=2024-02-01&rft.volume=36&rft.issue=8&rft.spage=e2305254&rft.epage=n/a&rft.pages=e2305254-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202305254&rft_dat=%3Cproquest_cross%3E2898955600%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2929883687&rft_id=info:pmid/38050899&rfr_iscdi=true