Near-infrared-responsive GE11-CuS@Gal nanoparticles as an intelligent drug release system for targeting therapy against oral squamous cell carcinoma
Galangin (Gal) is a natural plant flavonoid. More and more evidence shows that Gal can achieve anti-tumor effects by regulating various mechanisms. However, its poor water solubility, low bioavailability, and insufficient lesion targeting limit its clinical application. To overcome these shortcoming...
Gespeichert in:
Veröffentlicht in: | International journal of pharmaceutics 2024-01, Vol.649, p.123667-123667, Article 123667 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Galangin (Gal) is a natural plant flavonoid. More and more evidence shows that Gal can achieve anti-tumor effects by regulating various mechanisms. However, its poor water solubility, low bioavailability, and insufficient lesion targeting limit its clinical application. To overcome these shortcomings, we designed and developed a mesoporous nanosystem (GE11-CuS) that actively located the target area and photo-controlled drug release, which promoted the rapid accumulation of drugs in tumor tissues under NIR irradiation, thus achieving positive effects against cancer. In this study, we explored the application of the Gal-loaded nanometer system (GE11-CuS@Gal) in the treatment of oral squamous cell carcinoma (OSCC) both in vitro and in vivo. The results exhibited that GE11-CuS@Gal had excellent targeting ability and could accumulate efficiently in tumor cells (HSC-3). Meanwhile, the temperature of GE11-CuS@Gal increasing rapidly under NIR illumination damaged the integrity of the carrier and allowed Gal molecules to escape from the pores of the nanoparticles. When the accumulation of Gal in the nidus reached a certain level, the intracellular ROS level could be significantly increased and the antioxidative stress pathway mediated by Nrf2/OH-1 was effectively blocked, to inhibit the growth and migration of tumors. In conclusion, the GE11-CuS improved the antitumor activity of Gal in the body, which laid a foundation for the treatment of OSCC with traditional Chinese medicine ingredients. |
---|---|
ISSN: | 0378-5173 1873-3476 |
DOI: | 10.1016/j.ijpharm.2023.123667 |