Chemogenetic inhibition of locus coeruleus to rostromedial tegmental nucleus noradrenergic pathway increases light cycle ethanol drinking in male and female mice and blunts ethanol-induced CTA

We recently showed that chemogenetic activation of the locus coeruleus (LC) to the rostromedial tegmental nucleus (RMTg) noradrenergic (NE) pathway significantly blunted binge-like ethanol drinking and induced aversive-like behaviors in mice. The aim of the present study is to determine if silencing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuropharmacology 2024-02, Vol.244, p.109809, Article 109809
Hauptverfasser: Dornellas, Ana Paula S, Thiele, Todd E, Navarro, Montserrat
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We recently showed that chemogenetic activation of the locus coeruleus (LC) to the rostromedial tegmental nucleus (RMTg) noradrenergic (NE) pathway significantly blunted binge-like ethanol drinking and induced aversive-like behaviors in mice. The aim of the present study is to determine if silencing this TH + LC → RMTg noradrenergic pathway promotes increased levels of binge-like ethanol intake and reduced ethanol-induced conditioned taste aversion (CTA). To this end, both male and female TH-ires-cre mice on a C57BL/6 J background were cannulated in the RMTg and injected in the LC with rAVV viruses that encode cre-dependent Gi-expressing designer receptor exclusively activated by designer drugs (DREADDs), or its control, to directly control the activity of NE neurons. Inhibition of the LC to RMTg pathway had no effect on the binge-ethanol drinking in a "drinking-in-the-dark" (DID) paradigm. However, when using this paradigm during the light cycle, silencing of this circuit significantly increased ethanol intake without altering sucrose drinking. Moreover, we found that inhibition of this circuit significantly attenuated an ethanol-induced CTA. In addition, when compared to control animals, pairing RMTg-directed Clozapine N-oxide (CNO) with an i.p. injection of 1.5 g/kg ethanol reduced c-Fos activation in the LC, and increased c-Fos expression in the ventral tegmental area (VTA) in Gi-expressing mice. Our data show that inhibition of the TH + LC to the RMTg pathway significantly increased ethanol drinking as well as attenuated ethanol-induced CTA, supporting the involvement of the LC to RMTg noradrenergic circuit as an important protective mechanism against excessive ethanol consumption.
ISSN:0028-3908
1873-7064
1873-7064
DOI:10.1016/j.neuropharm.2023.109809