Qingchang Wenzhong Decoction ameliorates intestinal inflammation and intestinal barrier dysfunction in ulcerative colitis via the GC-C signaling pathway
Ulcerative colitis (UC) is an idiopathic, chronic inflammatory disorder of the colonic mucosa, accompanied with abdominal pain, and bloody diarrhea. Currently, clinical treatment options for UC are limited. Qingchang Wenzhong Decoction (QCWZD) is an effective prescription of traditional Chinese medi...
Gespeichert in:
Veröffentlicht in: | Journal of ethnopharmacology 2024-03, Vol.322, p.117503-117503, Article 117503 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Ulcerative colitis (UC) is an idiopathic, chronic inflammatory disorder of the colonic mucosa, accompanied with abdominal pain, and bloody diarrhea. Currently, clinical treatment options for UC are limited. Qingchang Wenzhong Decoction (QCWZD) is an effective prescription of traditional Chinese medicine for the treatment of UC. However, the mechanism of QCWZD in alleviating intestinal barrier dysfunction in UC has not been clearly explained.
To determine the mechanism whereby QCWZD promotes the recovery of intestinal barrier dysfunction in UC.
A secondary analysis of colonic mucosa from UC patients acquired from a prior RCT clinical trial was performed. The effects of QCWZD on intestinal mucus and mechanical barriers in UC patients were evaluated using colon tissue paraffin-embedded sections from UC patients. The mechanism was further investigated by in vivo and in vitro experiments. UC mice were established in sterile water with 3.0% dextran sodium sulfate (DSS). Meanwhile, mice in the treatment group were dosed with QCWZD or mesalazine. In vitro, an intestinal barrier model was constructed using Caco-2 and HT29 cells in co-culture. GC-C plasmid was used to overexpress/knock down GC-C to clarify the target of QCWZD. HE, AB-PAS, ELISA, immunohistochemistry and immunofluorescence assays were used to assess the level of colonic inflammation and intestinal barrier integrity. Rt-qPCR, Western Blot were used to detect the expression of genes and proteins related to GC-C signaling pathway. Molecular docking was used to simulate the binding sites of major components of QCWZD to GC-C.
In UC patients, QCWZD increased mucus secretion, goblet cell number, and promoted MUC2 and ZO-1 expression. QCWZD accelerated the recovery of UC mice from DSS-induced inflammation, including weight gain, reduced disease activity index (DAI) scores, colon length recovery, and histological healing. QCWZD promoted mucus secretion and increased ZO-1 expression in in vivo and in vitro experiments, thereby repairing mucus mechanical barrier damage. The effects of QCWZD are mediated through regulation of the GC-C signaling pathway, which in turn affects CFTR phosphorylation and MUC2 expression to promote mucus secretion, while inhibiting the over-activation of MLCK and repairing tight junctions to maintain the integrity of the mechanical barrier. Molecular docking results demonstrate the binding of the main components of QCWZD to GC-C.
Our study demonstrated that QCWZD modulates the GC-C si |
---|---|
ISSN: | 0378-8741 1872-7573 |
DOI: | 10.1016/j.jep.2023.117503 |