Enhancer-mediated FOXO3 expression promotes MSC adipogenic differentiation by activating autophagy
Mesenchymal stem cells (MSCs) are pluripotent stem cells capable of differentiating into osteocytes, adipocytes and chondrocytes. However, in osteoporosis, the balance of differentiation is tipped toward adipogenesis and the key mechanism is controversial. Researches have shown that, as upstream reg...
Gespeichert in:
Veröffentlicht in: | Biochimica et biophysica acta. Molecular basis of disease 2024-02, Vol.1870 (2), p.166975-166975, Article 166975 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Mesenchymal stem cells (MSCs) are pluripotent stem cells capable of differentiating into osteocytes, adipocytes and chondrocytes. However, in osteoporosis, the balance of differentiation is tipped toward adipogenesis and the key mechanism is controversial. Researches have shown that, as upstream regulatory elements of gene expression, enhancers ar involved in the expression of identity genes. In this study, we identified enhancers-mediated gene FOXO3 promoting MSC adipogenic differentiation by activating autophagy.
We integrated data of RNA sequencing (RNA-seq), chromatin immunoprecipitation sequencing (ChIP-seq) and ATAC-sequencing (ATAC-seq) to find the identity gene FOXO3. The expression of FOXO3 protein, adipogenic transcription factors and the substrate of autophagy were measured by western blotting. The Oil Red O (ORO) staining was used to visualize the adipogenesis of MSCs. Immunohistochemistry was used to visualize the FOXO3 expression in adipocytes in bone marrow. Immunofluorescence was used to detect the expression of PPARγ and LC3B.
During adipogenesis, enhancers redistribute to genes associated with adipogenic differentiation, among which we identified the pivotal identity gene FOXO3. FOXO3 could promote the expression of the adipogenic transcription factors PPARγ, CEBPα, and CEBPβ during adipogenic differentiation, while PPARγ, CEBPα, and CEBPβ could in turn bind to FOXO3 and continue to promote FOXO3 expression to form a positive feedback loop. Consistently elevated FOXO3 expression promotes autophagy by activating the PI3K-AKT pathway which mediates adipogenic differentiation.
Pivotal identity gene FOXO3 promotes autophagy by activating PI3K-AKT pathway, which provokes adipogenic differentiation of MSCs. Enhancer-regulated adipogenic identity gene FOXO3 could be an attractive treatment for osteoporosis. |
---|---|
ISSN: | 0925-4439 1879-260X |
DOI: | 10.1016/j.bbadis.2023.166975 |