An indirect numerical method for the solution of a class of optimal control problems with singular arcs
An indirect numerical method is presented that solves a class of optimal control problems that have a singular arc occurring after an initial nonsingular arc. This method iterates on the subset of initial costate variables that enforce the junction conditions for switching to a singular arc, and the...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on automatic control 1972-06, Vol.17 (3), p.363-365 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An indirect numerical method is presented that solves a class of optimal control problems that have a singular arc occurring after an initial nonsingular arc. This method iterates on the subset of initial costate variables that enforce the junction conditions for switching to a singular arc, and the time of switching off of the singular arc to a final nonsingular arc, to reduce a terminal error function of the final conditions to zero. This results in the solution to the two-point boundary-value problem obtained using the minimum principle and some necessary conditions for singular arcs. The main advantage of this method is that the exact solution to the two-point boundary-value problem is obtained. The main disadvantage is that the sequence of controls for the problem must be known to apply this method. Two illustrative examples are presented. |
---|---|
ISSN: | 0018-9286 1558-2523 |
DOI: | 10.1109/TAC.1972.1099989 |