Biochar-Based Single-Atom Catalyst with Fe‑N3O‑C Configuration for Efficient Degradation of Organic Dyes by Peroxymonosulfate Activation

Iron single-atom catalysts (Fe SACs) hold great promise for peroxymonosulfate (PMS) activation and degradation of organic pollutants in wastewater. However, insights into crucial catalytic sites and activation mechanisms of biochar-based Fe SACs for PMS remain a challenge. Herein, cotton stalk-deriv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2023-11, Vol.15 (49), p.57003-57014
Hauptverfasser: Xue, Xueyan, Xue, Nan, Ouyang, Dandan, Yang, Liuqian, Wang, Yanan, Zhu, Hui, Aihemaiti, Aikelaimu, Yin, Jiao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Iron single-atom catalysts (Fe SACs) hold great promise for peroxymonosulfate (PMS) activation and degradation of organic pollutants in wastewater. However, insights into crucial catalytic sites and activation mechanisms of biochar-based Fe SACs for PMS remain a challenge. Herein, cotton stalk-derived biochar-based Fe SACs (Fe SACs-BC) with an asymmetric Fe-N/O-C configuration were prepared, and their PMS activation and acid orange 7 (AO7) degradation mechanisms were investigated. The results showed that the removal efficiency of the Fe SACs-BC catalyst with Fe-N3O-C configuration for AO7 and other five investigated organic dyes reached 95–99% within 15 min. The EPR spectrums, quenching experiments, electrochemical analysis, masking experiments, XPS, and theoretical calculations indicated that degradations of organic dyes were dominated by singlet oxygen, which was generated by direct PMS conversion at the electron-deficient carbon and iron sites in the Fe-N3O-C configuration. The Fe SACs-BC/PMS exhibited high removal efficiency and strong tolerance in different water matrices with a wide pH range, various coexisting anions and interfering substances, showing great potential and applicability for efficient treatment of actual textile wastewaters.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.3c12518