Exploring the potential causal relationship between gut microbiota and heart failure: A two-sample mendelian randomization study combined with the geo database

In recent years, researchers have observed a potential association between alterations in gut microbiota and the onset and progression of heart failure. Nevertheless, the causal relationship between gut microbiota and heart failure remains a topic of controversy. This study employed a two-sample Men...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Current problems in cardiology 2024-02, Vol.49 (2), p.102235-102235, Article 102235
Hauptverfasser: Pang, Shuwen, Han, Tao, Huang, Xiwei, Zhao, Yueli, Qian, Jing, Zhong, Jiahui, Xie, Pingjin, Liao, Lu
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In recent years, researchers have observed a potential association between alterations in gut microbiota and the onset and progression of heart failure. Nevertheless, the causal relationship between gut microbiota and heart failure remains a topic of controversy. This study employed a two-sample Mendelian randomization approach to investigate the causal link between gut microbiota and heart failure. We extracted single nucleotide polymorphism (SNPs) data for heart failure (ebi-a-gcst009541) and gut microbiota from the publicly available genome-wide association analysis (GWAS) summary database. The primary analytical method employed was inverse variance weighting (IVW), complemented by validation using MR-PRESSO, weighted median, and MR pleiotropic residual methods. Additionally, gene pleiotropy (MR-Egger), heterogeneity testing, and a "leave-one-out" analysis were conducted to assess the robustness of the findings. Utilizing the limma package, differentially expressed genes (DEGs) from the Gut Microbiota datasets (GSE3586, GSE5406) and Heart Failure datasets (GSE47908, GSE87466) sourced from the Gene Expression Omnibus (GEO) were curated. Subsequent enrichment analysis was conducted using the Cluster Profiler and GO plot packages to validate the MR analysis outcomes. The results of our analysis revealed seven distinct bacterial groups in the intestines that exhibited associations.with.the.risk.of.heart.failure. These.included.class.negativicutes (P = 0.02,OR:1.11,95%CI:1.02,1.21), gene.eubacterium.eligensgroup (P = 0.02,OR:1.10,95%CI:1.01,1.20),gene.eubacteriummoxidoreducensgroup (P = 0.01,OR:1.10,95%CI:1.02,1.19),Order.selenium (P = 0.02,OR:1.11,95%CI:1.02,1.21), gene.familyxiiiucg001 (P = 0.03,OR=1.09.95%CI:1.01,1.19), gene.familyxiiiad3011group (P = 0.03,OR:0.92,95%CI:0.86,0.99), and.gene.anaerostipes (P = 0.00,OR:0.87,95%CI:0.80,0.94). Nevertheless, upon conducting reverse causal MR analysis, no evidence of a causal relationship between heart failure and the aforementioned seven gut microbiota groups was found.Bioinformatics analysis reveals shared DEGs between gut microbiota and heart failure. This Mendelian randomization study represents the first endeavor to explore the causal relationship between specific gut microbiota and heart failure. The findings suggest a significant correlation between these seven specific gut microbiota groups and the risk of heart failure, potentially offering valuable insights for heart failure prevention and control effo
ISSN:0146-2806
1535-6280
DOI:10.1016/j.cpcardiol.2023.102235