Marriage of Organic and Grubbs Catalysts for Tandem Synthesis of Bottlebrush Polyesters

Bottlebrush polymers (BBPs) have gained wide attention for their special characters, such as rigid main/side chains, stemming from the exceedingly high graft density. This study aims to provide a simple synthetic approach to BBPs with polyester side chains by merging ring-opening alternating copolym...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS macro letters 2023-12, Vol.12 (12), p.1711-1717
Hauptverfasser: Huang, Yuan, Zhao, Chenke, Zhang, Boru, Li, Heng, Zhao, Junpeng
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Bottlebrush polymers (BBPs) have gained wide attention for their special characters, such as rigid main/side chains, stemming from the exceedingly high graft density. This study aims to provide a simple synthetic approach to BBPs with polyester side chains by merging ring-opening alternating copolymerization (ROAP) and ring-opening metathesis polymerization (ROMP). A simple phosphazene base ( t BuP1) is employed for the ROAP of phthalic anhydride and epoxide, after which Grubbs third-generation catalyst (G3) is added to in situ switch on ROMP of the macromonomer, i.e., norbornenyl-ended alternating polyester. The compatibility of t BuP1 with G3 and well-controlled ROMP is evidenced by DOSY-NMR of mixed catalysts, characterization of BBPs, and side-chain degradation. The method can also be extended to BBPs with one-step synthesized block copolyesters side chains. These results highlight the strength of the non-nucleophilic organobase catalyst for convenient construction of complex (degradable) polymers with compositional diversity.
ISSN:2161-1653
2161-1653
DOI:10.1021/acsmacrolett.3c00695