Ab Initio Phase Diagram of Gold in Extreme Conditions
A phase diagram of gold is proposed in the [0; 1000] GPa and [0; 10 000] K ranges of pressure and temperature, respectively, topologically modified with respect to previous predictions. Using finite-temperature ab initio simulations and nonequilibirum thermodynamic integration, both accelerated by m...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2023-11, Vol.131 (20), p.206101-206101, Article 206101 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A phase diagram of gold is proposed in the [0; 1000] GPa and [0; 10 000] K ranges of pressure and temperature, respectively, topologically modified with respect to previous predictions. Using finite-temperature ab initio simulations and nonequilibirum thermodynamic integration, both accelerated by machine learning, we evaluate the Gibbs free energies of three solid phases previously proposed. At room temperature, the face-centered cubic (fcc) phase is stable up to ∼500 GPa whereas the body-centered cubic (bcc) phase only appears above 1 TPa. At higher temperature, we do not highlight any fcc-bcc transition line between 200 and 400 GPa, in agreement with ramp-compressed experiments. The present results only disclose a bcc domain around 140-235 GPa and 6000-8000 K, consistent with the triple point recently found in shock experiments. We demonstrate that this re-stabilization of the bcc phase at high temperature is due to anharmonic effects. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.131.206101 |