A novel fixed-time error-monitoring neural network for solving dynamic quaternion-valued Sylvester equations

This paper addresses the dynamic quaternion-valued Sylvester equation (DQSE) using the quaternion real representation and the neural network method. To transform the Sylvester equation in the quaternion field into an equivalent equation in the real field, three different real representation modes fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural networks 2024-02, Vol.170, p.494-505
Hauptverfasser: Xiao, Lin, Cao, Penglin, Wang, Zidong, Liu, Sai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 505
container_issue
container_start_page 494
container_title Neural networks
container_volume 170
creator Xiao, Lin
Cao, Penglin
Wang, Zidong
Liu, Sai
description This paper addresses the dynamic quaternion-valued Sylvester equation (DQSE) using the quaternion real representation and the neural network method. To transform the Sylvester equation in the quaternion field into an equivalent equation in the real field, three different real representation modes for the quaternion are adopted by considering the non-commutativity of quaternion multiplication. Based on the equivalent Sylvester equation in the real field, a novel recurrent neural network model with an integral design formula is proposed to solve the DQSE. The proposed model, referred to as the fixed-time error-monitoring neural network (FTEMNN), achieves fixed-time convergence through the action of a state-of-the-art nonlinear activation function. The fixed-time convergence of the FTEMNN model is theoretically analyzed. Two examples are presented to verify the performance of the FTEMNN model with a specific focus on fixed-time convergence. Furthermore, the chattering phenomenon of the FTEMNN model is discussed, and a saturation function scheme is designed. Finally, the practical value of the FTEMNN model is demonstrated through its application to image fusion denoising.
doi_str_mv 10.1016/j.neunet.2023.11.058
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2896807422</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0893608023006810</els_id><sourcerecordid>2896807422</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-a232e388b73e670d20ac3f0aa8781c9537aaa291bb53646a0585fde6d08a4fea3</originalsourceid><addsrcrecordid>eNp9UE1v1DAUtCoQ3Rb-AUI-cknwR9ZxLkhVVaBSpR4KZ-ut_VJ5cezWTgL77_FqC0dOT3oz8-bNEPKes5Yzrj7t24hLxLkVTMiW85Zt9RnZcN0Pjei1eEU2TA-yUUyzc3JRyp4xpnQn35BzqZkclFYbEq5oTCsGOvrf6JrZT0gx55SbKUU_p-zjI61GGUId86-Uf9IxZVpSWI-QO0SYvKXPC8yYo0-xWSEs6OjDIaxY6pLiEaxIeUtejxAKvnuZl-THl5vv19-au_uvt9dXd42VSswNCClQar3rJaqeOcHAypEB6F5zO2xlDwBi4LvdVqpOQQ2-HR0qxzR0I4K8JB9Pd59yel7qE2byxWIIEDEtxQhdw7O-E6JSuxPV5lRKxtE8ZT9BPhjOzLFnszenns2xZ8O5qXZV9uHFYdlN6P6J_hZbCZ9PBKw5V4_ZFOsxWnQ-o52NS_7_Dn8ANQuTgA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2896807422</pqid></control><display><type>article</type><title>A novel fixed-time error-monitoring neural network for solving dynamic quaternion-valued Sylvester equations</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><creator>Xiao, Lin ; Cao, Penglin ; Wang, Zidong ; Liu, Sai</creator><creatorcontrib>Xiao, Lin ; Cao, Penglin ; Wang, Zidong ; Liu, Sai</creatorcontrib><description>This paper addresses the dynamic quaternion-valued Sylvester equation (DQSE) using the quaternion real representation and the neural network method. To transform the Sylvester equation in the quaternion field into an equivalent equation in the real field, three different real representation modes for the quaternion are adopted by considering the non-commutativity of quaternion multiplication. Based on the equivalent Sylvester equation in the real field, a novel recurrent neural network model with an integral design formula is proposed to solve the DQSE. The proposed model, referred to as the fixed-time error-monitoring neural network (FTEMNN), achieves fixed-time convergence through the action of a state-of-the-art nonlinear activation function. The fixed-time convergence of the FTEMNN model is theoretically analyzed. Two examples are presented to verify the performance of the FTEMNN model with a specific focus on fixed-time convergence. Furthermore, the chattering phenomenon of the FTEMNN model is discussed, and a saturation function scheme is designed. Finally, the practical value of the FTEMNN model is demonstrated through its application to image fusion denoising.</description><identifier>ISSN: 0893-6080</identifier><identifier>EISSN: 1879-2782</identifier><identifier>DOI: 10.1016/j.neunet.2023.11.058</identifier><identifier>PMID: 38039686</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Fixed-time convergence ; Image fusion denoising ; Quaternion-valued equation ; Recurrent neural network ; Sylvester equation</subject><ispartof>Neural networks, 2024-02, Vol.170, p.494-505</ispartof><rights>2023</rights><rights>Crown Copyright © 2023. Published by Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-a232e388b73e670d20ac3f0aa8781c9537aaa291bb53646a0585fde6d08a4fea3</citedby><cites>FETCH-LOGICAL-c362t-a232e388b73e670d20ac3f0aa8781c9537aaa291bb53646a0585fde6d08a4fea3</cites><orcidid>0000-0002-9576-7401 ; 0000-0003-3172-3490</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neunet.2023.11.058$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38039686$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xiao, Lin</creatorcontrib><creatorcontrib>Cao, Penglin</creatorcontrib><creatorcontrib>Wang, Zidong</creatorcontrib><creatorcontrib>Liu, Sai</creatorcontrib><title>A novel fixed-time error-monitoring neural network for solving dynamic quaternion-valued Sylvester equations</title><title>Neural networks</title><addtitle>Neural Netw</addtitle><description>This paper addresses the dynamic quaternion-valued Sylvester equation (DQSE) using the quaternion real representation and the neural network method. To transform the Sylvester equation in the quaternion field into an equivalent equation in the real field, three different real representation modes for the quaternion are adopted by considering the non-commutativity of quaternion multiplication. Based on the equivalent Sylvester equation in the real field, a novel recurrent neural network model with an integral design formula is proposed to solve the DQSE. The proposed model, referred to as the fixed-time error-monitoring neural network (FTEMNN), achieves fixed-time convergence through the action of a state-of-the-art nonlinear activation function. The fixed-time convergence of the FTEMNN model is theoretically analyzed. Two examples are presented to verify the performance of the FTEMNN model with a specific focus on fixed-time convergence. Furthermore, the chattering phenomenon of the FTEMNN model is discussed, and a saturation function scheme is designed. Finally, the practical value of the FTEMNN model is demonstrated through its application to image fusion denoising.</description><subject>Fixed-time convergence</subject><subject>Image fusion denoising</subject><subject>Quaternion-valued equation</subject><subject>Recurrent neural network</subject><subject>Sylvester equation</subject><issn>0893-6080</issn><issn>1879-2782</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9UE1v1DAUtCoQ3Rb-AUI-cknwR9ZxLkhVVaBSpR4KZ-ut_VJ5cezWTgL77_FqC0dOT3oz8-bNEPKes5Yzrj7t24hLxLkVTMiW85Zt9RnZcN0Pjei1eEU2TA-yUUyzc3JRyp4xpnQn35BzqZkclFYbEq5oTCsGOvrf6JrZT0gx55SbKUU_p-zjI61GGUId86-Uf9IxZVpSWI-QO0SYvKXPC8yYo0-xWSEs6OjDIaxY6pLiEaxIeUtejxAKvnuZl-THl5vv19-au_uvt9dXd42VSswNCClQar3rJaqeOcHAypEB6F5zO2xlDwBi4LvdVqpOQQ2-HR0qxzR0I4K8JB9Pd59yel7qE2byxWIIEDEtxQhdw7O-E6JSuxPV5lRKxtE8ZT9BPhjOzLFnszenns2xZ8O5qXZV9uHFYdlN6P6J_hZbCZ9PBKw5V4_ZFOsxWnQ-o52NS_7_Dn8ANQuTgA</recordid><startdate>202402</startdate><enddate>202402</enddate><creator>Xiao, Lin</creator><creator>Cao, Penglin</creator><creator>Wang, Zidong</creator><creator>Liu, Sai</creator><general>Elsevier Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9576-7401</orcidid><orcidid>https://orcid.org/0000-0003-3172-3490</orcidid></search><sort><creationdate>202402</creationdate><title>A novel fixed-time error-monitoring neural network for solving dynamic quaternion-valued Sylvester equations</title><author>Xiao, Lin ; Cao, Penglin ; Wang, Zidong ; Liu, Sai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-a232e388b73e670d20ac3f0aa8781c9537aaa291bb53646a0585fde6d08a4fea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Fixed-time convergence</topic><topic>Image fusion denoising</topic><topic>Quaternion-valued equation</topic><topic>Recurrent neural network</topic><topic>Sylvester equation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiao, Lin</creatorcontrib><creatorcontrib>Cao, Penglin</creatorcontrib><creatorcontrib>Wang, Zidong</creatorcontrib><creatorcontrib>Liu, Sai</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Neural networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiao, Lin</au><au>Cao, Penglin</au><au>Wang, Zidong</au><au>Liu, Sai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel fixed-time error-monitoring neural network for solving dynamic quaternion-valued Sylvester equations</atitle><jtitle>Neural networks</jtitle><addtitle>Neural Netw</addtitle><date>2024-02</date><risdate>2024</risdate><volume>170</volume><spage>494</spage><epage>505</epage><pages>494-505</pages><issn>0893-6080</issn><eissn>1879-2782</eissn><abstract>This paper addresses the dynamic quaternion-valued Sylvester equation (DQSE) using the quaternion real representation and the neural network method. To transform the Sylvester equation in the quaternion field into an equivalent equation in the real field, three different real representation modes for the quaternion are adopted by considering the non-commutativity of quaternion multiplication. Based on the equivalent Sylvester equation in the real field, a novel recurrent neural network model with an integral design formula is proposed to solve the DQSE. The proposed model, referred to as the fixed-time error-monitoring neural network (FTEMNN), achieves fixed-time convergence through the action of a state-of-the-art nonlinear activation function. The fixed-time convergence of the FTEMNN model is theoretically analyzed. Two examples are presented to verify the performance of the FTEMNN model with a specific focus on fixed-time convergence. Furthermore, the chattering phenomenon of the FTEMNN model is discussed, and a saturation function scheme is designed. Finally, the practical value of the FTEMNN model is demonstrated through its application to image fusion denoising.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>38039686</pmid><doi>10.1016/j.neunet.2023.11.058</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9576-7401</orcidid><orcidid>https://orcid.org/0000-0003-3172-3490</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0893-6080
ispartof Neural networks, 2024-02, Vol.170, p.494-505
issn 0893-6080
1879-2782
language eng
recordid cdi_proquest_miscellaneous_2896807422
source Elsevier ScienceDirect Journals Complete - AutoHoldings
subjects Fixed-time convergence
Image fusion denoising
Quaternion-valued equation
Recurrent neural network
Sylvester equation
title A novel fixed-time error-monitoring neural network for solving dynamic quaternion-valued Sylvester equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T14%3A30%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20fixed-time%20error-monitoring%20neural%20network%20for%20solving%20dynamic%20quaternion-valued%20Sylvester%20equations&rft.jtitle=Neural%20networks&rft.au=Xiao,%20Lin&rft.date=2024-02&rft.volume=170&rft.spage=494&rft.epage=505&rft.pages=494-505&rft.issn=0893-6080&rft.eissn=1879-2782&rft_id=info:doi/10.1016/j.neunet.2023.11.058&rft_dat=%3Cproquest_cross%3E2896807422%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2896807422&rft_id=info:pmid/38039686&rft_els_id=S0893608023006810&rfr_iscdi=true