A novel fixed-time error-monitoring neural network for solving dynamic quaternion-valued Sylvester equations

This paper addresses the dynamic quaternion-valued Sylvester equation (DQSE) using the quaternion real representation and the neural network method. To transform the Sylvester equation in the quaternion field into an equivalent equation in the real field, three different real representation modes fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural networks 2024-02, Vol.170, p.494-505
Hauptverfasser: Xiao, Lin, Cao, Penglin, Wang, Zidong, Liu, Sai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper addresses the dynamic quaternion-valued Sylvester equation (DQSE) using the quaternion real representation and the neural network method. To transform the Sylvester equation in the quaternion field into an equivalent equation in the real field, three different real representation modes for the quaternion are adopted by considering the non-commutativity of quaternion multiplication. Based on the equivalent Sylvester equation in the real field, a novel recurrent neural network model with an integral design formula is proposed to solve the DQSE. The proposed model, referred to as the fixed-time error-monitoring neural network (FTEMNN), achieves fixed-time convergence through the action of a state-of-the-art nonlinear activation function. The fixed-time convergence of the FTEMNN model is theoretically analyzed. Two examples are presented to verify the performance of the FTEMNN model with a specific focus on fixed-time convergence. Furthermore, the chattering phenomenon of the FTEMNN model is discussed, and a saturation function scheme is designed. Finally, the practical value of the FTEMNN model is demonstrated through its application to image fusion denoising.
ISSN:0893-6080
1879-2782
DOI:10.1016/j.neunet.2023.11.058