Low-power Viterbi decoder for CDMA mobile terminals
An efficient state-sequential very large scale integration (VLSI) architecture and low-power design methodologies ranging from the system-level to the layout-level are presented for a large-constraint-length Viterbi decoder for code division multiple access (CDMA) digital cellular/personal communica...
Gespeichert in:
Veröffentlicht in: | IEEE journal of solid-state circuits 1998-03, Vol.33 (3), p.473-482 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An efficient state-sequential very large scale integration (VLSI) architecture and low-power design methodologies ranging from the system-level to the layout-level are presented for a large-constraint-length Viterbi decoder for code division multiple access (CDMA) digital cellular/personal communication services (PCS) applications. The low-power design approaches are also applicable to many other systems and algorithms. VLSI implementation issues and prototype fabrication results for a state-sequential Viterbi decoder for convolutional codes of rate 1/2 and constraint-length 9 are also described. The chip's core, consisting of approximately 65 k transistors, occupies 1.9 mm by 3.4 mm in a 0.8-/spl mu/m triple-layer-metal n-well CMOS technology. The chip's measured total power dissipation is 0.24 mW at a 14.4 kb/s data-rate with 0.9216 MHz clocking at a supply voltage of 1.65 V. The Viterbi decoder presented here is the lowest power and smallest area core in its class, to the best of our knowledge. |
---|---|
ISSN: | 0018-9200 1558-173X |
DOI: | 10.1109/4.661213 |