Fatigue crack growth law for ferroelectrics under cyclic electrical and combined electromechanical loading
New data sets of crack propagation in lead-zirconate-titanate DCB specimens under cyclic electric loading combined with a constant mechanical load have been obtained. Both an increasing mechanical load as well as an increasing field amplitude resulted in an enhanced crack propagation rate. The exper...
Gespeichert in:
Veröffentlicht in: | Journal of the European Ceramic Society 2007, Vol.27 (6), p.2485-2494 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | New data sets of crack propagation in lead-zirconate-titanate DCB specimens under cyclic electric loading combined with a constant mechanical load have been obtained. Both an increasing mechanical load as well as an increasing field amplitude resulted in an enhanced crack propagation rate. The experiment was modelled with a Finite Element Analysis that used special crack tip elements and assumed a finite permeability of the crack. The calculations revealed a dielectric crack closure effect, explaining the experimentally observed threshold of fatigue crack growth for the electric load. Fracture quantities suitable for cyclic loading by electric fields above the coercive field were discussed and a Mode-IV intensity factor considered as appropriate. The resulting correlations were applied to the experimental results and a power law relationship for the crack growth rate versus the range of the Mode-IV intensity factor was found. |
---|---|
ISSN: | 0955-2219 1873-619X |
DOI: | 10.1016/j.jeurceramsoc.2006.09.010 |