Covering Pareto sets by multilevel subdivision techniques
In this work, we present a new set-oriented numerical method for the numerical solution of multiobjective optimization problems. These methods are global in nature and allow to approximate the entire set of (global) Pareto points. After proving convergence of an associated abstract subdivision proce...
Gespeichert in:
Veröffentlicht in: | Journal of optimization theory and applications 2005, Vol.124 (1), p.113-136 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this work, we present a new set-oriented numerical method for the numerical solution of multiobjective optimization problems. These methods are global in nature and allow to approximate the entire set of (global) Pareto points. After proving convergence of an associated abstract subdivision procedure, we use this result as a basis for the development of three different algorithms. We consider also appropriate combinations of them in order to improve the total performance. Finally, we illustrate the efficiency of these techniques via academic examples plus a real technical application, namely, the optimization of an active suspension system for cars. |
---|---|
ISSN: | 0022-3239 1573-2878 |
DOI: | 10.1007/s10957-004-6468-7 |