Mercury deposition to lake sediments near historic gold mines in northern Canada

Mercury (Hg) contamination in aquatic systems can lead to adverse human and environmental health outcomes. Yellowknife, a city in Canada’s Northwest Territories, is a historic mining community, with two large gold mines (Giant Mine and Con Mine) that used Hg amalgamation methods to extract gold betw...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental pollution (1987) 2024-02, Vol.342, p.123038-123038, Article 123038
Hauptverfasser: Cheney, Cynthia L., Eccles, Kristin M., Kimpe, Linda E., Lehnherr, Igor, Blais, Jules M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mercury (Hg) contamination in aquatic systems can lead to adverse human and environmental health outcomes. Yellowknife, a city in Canada’s Northwest Territories, is a historic mining community, with two large gold mines (Giant Mine and Con Mine) that used Hg amalgamation methods to extract gold between ∼1938 and 1960. We analyzed dated sediment cores from 20 small lakes to investigate the spatial and temporal Hg deposition patterns within 50 km of Giant Mine. Breakpoint analysis of the within-lake z-score normalized anthropogenic Hg flux indicates two significant time periods of changing emission rates. The first is a significant increase in Hg deposition rate (∼1925) during the time of gold exploration in the region and onset of Hg amalgamation (1938) and the second is a significant decrease in deposition rate that begins around the time of the cessation of Hg amalgamation at Giant Mine (∼1959). Sediment Hg concentrations exceeded the Canadian Council for Ministers of the Environment Interim Sediment Quality Guideline (ISQG) for Hg (0.17 mg/kg dw) in 55% of the lakes (n = 11) during mining (1948–1999). All lakes within 5 km of the Giant Mine roaster stack exceeded CCME ISQG during mining (n = 8), with a 4-fold increase in total Hg concentration observed during mining at these near-field (
ISSN:0269-7491
1873-6424
DOI:10.1016/j.envpol.2023.123038