Reducing Transdermal Uptake of Semivolatile Plasticizers from Indoor Environments: A Clothing Intervention

Models and laboratory studies suggest that everyday clothing influences the transdermal uptake of semivolatile organic compounds, including phthalate plasticizers, from indoor environments. However, this effect has not been documented in environmental exposure settings. In this pilot study, we quant...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2023-12, Vol.57 (49), p.20678-20688
Hauptverfasser: Hammel, Stephanie C., Eftekhari, Azin, Eichler, Clara M. A., Liu, Chih-Wei, Nylander-French, Leena A., Engel, Lawrence S., Lu, Kun, Morrison, Glenn C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Models and laboratory studies suggest that everyday clothing influences the transdermal uptake of semivolatile organic compounds, including phthalate plasticizers, from indoor environments. However, this effect has not been documented in environmental exposure settings. In this pilot study, we quantified daily excretion of 17 urinary metabolites (μg/day) for phthalates and phthalate alternatives in nine participants during 5 days. On Day 0, baseline daily excretion was determined in participants’ urine. Starting on Day 1, participants refrained from eating phthalate-heavy foods and using personal care products. On Days 3 and 4, participants wore precleaned clothing as an exposure intervention. We observed a reduction in the daily excretion of phthalates during the intervention; mono-n-butyl phthalate, monoisobutyl phthalate (MiBP), and monobenzyl phthalate were significantly reduced by 35, 38, and 56%, respectively. Summed metabolites of di­(2-ethylhexyl)­phthalate (DEHP) were also reduced (27%; not statistically significant). A similar reduction among phthalate alternatives was not observed. The daily excretion of MiBP during the nonintervention period strongly correlated with indoor air concentrations of diisobutyl phthalate (DiBP), suggesting that inhalation and transdermal uptake of DiBP from the air in homes are dominant exposure pathways. The results indicate that precleaned clothing can significantly reduce environmental exposure to phthalates and phthalate alternatives.
ISSN:0013-936X
1520-5851
DOI:10.1021/acs.est.3c06142