On cone-invariant linear matrix inequalities
An exact solution for a special class of cone-preserving linear matrix inequalities (LMIs) is developed. By using a generalized version of the classical Perron-Frobenius theorem, the optimal value is shown to be equal to the spectral radius of an associated linear operator. This allows for a much mo...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on automatic control 2000-08, Vol.45 (8), p.1558-1563 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An exact solution for a special class of cone-preserving linear matrix inequalities (LMIs) is developed. By using a generalized version of the classical Perron-Frobenius theorem, the optimal value is shown to be equal to the spectral radius of an associated linear operator. This allows for a much more efficient computation of the optimal solution using, for instance, power iteration-type algorithms. This particular LMI class appears in the computation of upper bounds for some generalizations of the structured singular value /spl mu/ (spherical /spl mu/) and in a class of rank minimization problems previously studied. Examples and comparisons with existing techniques are provided. |
---|---|
ISSN: | 0018-9286 1558-2523 |
DOI: | 10.1109/9.871772 |