On cone-invariant linear matrix inequalities

An exact solution for a special class of cone-preserving linear matrix inequalities (LMIs) is developed. By using a generalized version of the classical Perron-Frobenius theorem, the optimal value is shown to be equal to the spectral radius of an associated linear operator. This allows for a much mo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 2000-08, Vol.45 (8), p.1558-1563
Hauptverfasser: Parrilo, P.A., Khatri, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An exact solution for a special class of cone-preserving linear matrix inequalities (LMIs) is developed. By using a generalized version of the classical Perron-Frobenius theorem, the optimal value is shown to be equal to the spectral radius of an associated linear operator. This allows for a much more efficient computation of the optimal solution using, for instance, power iteration-type algorithms. This particular LMI class appears in the computation of upper bounds for some generalizations of the structured singular value /spl mu/ (spherical /spl mu/) and in a class of rank minimization problems previously studied. Examples and comparisons with existing techniques are provided.
ISSN:0018-9286
1558-2523
DOI:10.1109/9.871772