Updated Chronic Copper Bioavailability Models for Invertebrates and Algae

Chronic copper (Cu) bioavailability models have been successfully implemented in European risk assessment frameworks and compliance evaluations. However, they were developed almost two decades ago, which calls for an update. In the study, we present updated chronic Cu bioavailability models for inve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental toxicology and chemistry 2024-02, Vol.43 (2), p.450-467
Hauptverfasser: Nys, Charlotte, Van Sprang, Patrick, Lofts, Stephen, Baken, Stijn, Delbeke, Katrien, De Schamphelaere, Karel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Chronic copper (Cu) bioavailability models have been successfully implemented in European risk assessment frameworks and compliance evaluations. However, they were developed almost two decades ago, which calls for an update. In the study, we present updated chronic Cu bioavailability models for invertebrates and algae. They consider recent ecotoxicity data sets and use the more recent speciation model Windermere Humic Aqueous Model (WHAM) VII and an optimized model structure (i.e., a generalized bioavailability model [gBAM]). Contrary to the classic biotic ligand model, a gBAM models the effect of pH on Cu2+ toxicity via a log‐linear relationship parametrized through the pH slope SpH. The recalibrated SpH parameters are −0.208 for invertebrates (Daphnia magna, two clones) and −0.975 for algae (Raphidocelis subcapitata and Chlorella vulgaris). The updated models predict 80% to 100% of the observed effect levels for eight different species within a factor of 2. The only exception was one of the two data sets considering subchronic 7‐day mortality to Hyalella azteca: the prediction performance of the updated invertebrate model at pH ≥ 8.3 was poor because the effect of pH on Cu2+ toxicity appeared to be dependent on the pH itself (with a steeper pH slope compared with the updated invertebrate model at pH ≥ 8.1). The prediction performance of the updated Cu bioavailability models was similar to or better than that of the models used for regulatory application in Europe until now, with one exception (i.e., H. azteca). Together with the recently published fish bioavailability model, the models developed in the present study constitute a complete, updated, and consistent bioavailability model set. Overall, the updated chronic Cu bioavailability model set is robust and can be used in regulatory applications. The updated bioavailability model set is currently used under the European Union Registration, Evaluation, Authorisation, and Restriction of Chemicals framework regulation to guide the safe use of Cu. Environ Toxicol Chem 2024;43:450–467. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
ISSN:0730-7268
1552-8618
DOI:10.1002/etc.5796