High-security three-dimensional optical transmission mechanism utilizing time-frequency-space interleaving disruption

In this paper, we propose a high-security three-dimensional optical transmission system utilizing time-frequency-space interleaving chaos, which simultaneously enhances the reliability and security of the system. The four-wing 3D chaos model encrypts the time-frequency space interleaved modulation d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics express 2023-11, Vol.31 (23), p.38640-38652
Hauptverfasser: Cui, Jie, Liu, Bo, Ren, Jianxin, Mao, Yaya, Wu, Xiangyu, Chen, Shuaidong, Zhao, Linong, Li, Ying, Guo, Zeqian, Zhou, Shuyu, Xu, Dongdong, Jiang, Lei, Zhang, Juntao
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we propose a high-security three-dimensional optical transmission system utilizing time-frequency-space interleaving chaos, which simultaneously enhances the reliability and security of the system. The four-wing 3D chaos model encrypts the time-frequency space interleaved modulation domain of a orthogonal time-frequency space (OTFS) modulation signal and the modulated phase information simultaneously, improving the system's security. We also experimentally validate the proposed high-security 3D-OTFS method, utilizing the hexadecimal modulation technique. The modulated OTFS signal achieves a transmission rate of 34.1 Gb/s over a 2-km seven-core fiber link, with the OTFS signal exhibiting a maximum of 1.31 dB receiver sensitivity gain compared to orthogonal frequency division multiplexing (OFDM) signals under the forward error correction threshold of the bit error rate. The achieved keyspace is equal to 5 × 10 48 . The findings demonstrate that the proposed high-security three-dimensional optical transmission mechanism, based on time-frequency-space interleaved disruption, exhibits excellent anti-interference ability and confidentiality performance. Consequently, it holds promising prospects for future applications in optical communications.
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.504520