Genome-Wide Characterization of Fennel (Anethum foeniculum) MiRNome and Identification of its Potential Targets in Homo sapiens and Arabidopsis thaliana: An Inter and Intra-species Computational Scrutiny
MicroRNAs could be promising biomarkers for various diseases, and small RNA drugs have already been FDA approved for clinical use. This area of research is rapidly expanding and has significant potential for the future. Fennel ( Anethum foeniculum ) is a highly esteemed spice plant with economic and...
Gespeichert in:
Veröffentlicht in: | Biochemical genetics 2024-08, Vol.62 (4), p.2766-2795 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | MicroRNAs could be promising biomarkers for various diseases, and small RNA drugs have already been FDA approved for clinical use. This area of research is rapidly expanding and has significant potential for the future. Fennel (
Anethum foeniculum
) is a highly esteemed spice plant with economic and medicinal benefits, making it an invaluable asset in the pharmaceutical industry. To characterize the fennel miRNAs and their
Arabidopsis thaliana
and
Homo sapience
targets with functional enrichment analysis and human disease association. A homology-based computational approach characterized the MiRnome of the
Anethum foeniculum
genome and assessed its impact on
Arabidopsis thaliana
and
Homo sapience
transcriptomes. In addition, functional enrichment analysis was evaluated for both species’ targets. Moreover, PPI network analysis, hub gene identification, and MD simulation analysis of the top hub node with fennel miRNA were incorporated. We have identified 100 miRNAs of fennel and their target genes, which include 2536 genes in
Homo sapiens
and 1314 genes in
Arabidopsis thaliana
. Functional enrichment analysis reveals 56
Arabidopsis thaliana
targets of fennel miRNAs showed involvement in metabolic pathways. Highly enriched human KEGG pathways were associated with several diseases, especially cancer. The protein–protein interaction network of human targets determined the top ten nodes; from them, seven hub nodes, namely
MAPK1
, PIK3R1, STAT3, EGFR, KRAS, CDC42, and SMAD4,
have shown their involvement in the pancreatic cancer pathway. Based on the Blast algorithm, 21 fennel miRNAs are homologs to 16 human miRNAs were predicted; from them, the
CSPP1
target was a common target for afo-miR11117a-3p and has-miR-6880-5p homologs miRNAs. Our results are the first to report the 100 fennel miRNAs, and predictions for their endogenous and human target genes provide a basis for further understanding of
Anethum foeniculum
miRNAs and the biological processes and diseases with which they are associated. |
---|---|
ISSN: | 0006-2928 1573-4927 1573-4927 |
DOI: | 10.1007/s10528-023-10575-7 |