Use of zero-valent iron-modified sand filters for greywater treatment: performance evaluation and modelling using response surface methodology
The conventional sand filter when used alone for on-site treatment of greywater fails to meet different reuse standards, and hence there is a need to improve the potential of sand filters to remove different contaminants from greywater. Performance of zero-valent iron-modified (ZVI) sand filters is...
Gespeichert in:
Veröffentlicht in: | Environmental science and pollution research international 2023-11 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The conventional sand filter when used alone for on-site treatment of greywater fails to meet different reuse standards, and hence there is a need to improve the potential of sand filters to remove different contaminants from greywater. Performance of zero-valent iron-modified (ZVI) sand filters is investigated in the present study for the treatment of real greywater. The experiments were conducted using three filters: an unmodified filter (SF) and two iron-modified filters, MSF-2 (with 2 kg of ZVI) and MSF-4 (with 4 kg of ZVI). The study evaluated the performance of these filters under different conditions: daily feed volumes of 10 L (72 L/m2/day), 20 L (144 L/m2/day), and 30 L (217 L/m2/day), as well as pause periods of 12, 24, and 36 h. The results showed that the ZVI-modified filters outperformed the unmodified filter significantly. Specifically, MSF-4 showed higher pollutant removal compared to MSF-2. The filter MSF-4 achieved 58% COD removal, 59% BOD removal, 56% NH4-N removal, 82% PO4-P removal, and a significant 1.96 log reduction in fecal coliforms. To optimize the filter operation, three key parameters, amount of ZVI, feed volume, and pause period were considered. The Box-Behnken design (BBD) with response surface methodology was employed to achieve optimization. The results of the optimization study indicated that the optimal conditions for the filters were 2.67 kg of ZVI quantity, a feed volume of 30 L (217 L/m2/day), and a pause period of 32.1 h. |
---|---|
ISSN: | 1614-7499 1614-7499 |
DOI: | 10.1007/s11356-023-31182-4 |