Metal gate work function engineering on gate leakage of MOSFETs

We present a systematic study of tunneling leakage current in metal gate MOSFETs and how it is affected by the work function of the metal gate electrodes. Physical models used for simulations were corroborated by experimental results from SiO/sub 2/ and HfO/sub 2/ gate dielectrics with TaN electrode...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on electron devices 2004-11, Vol.51 (11), p.1783-1789
Hauptverfasser: Yong-Tian Hou, Ming-Fu Li, Low, T., Dim-Lee Kwong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a systematic study of tunneling leakage current in metal gate MOSFETs and how it is affected by the work function of the metal gate electrodes. Physical models used for simulations were corroborated by experimental results from SiO/sub 2/ and HfO/sub 2/ gate dielectrics with TaN electrodes. In bulk CMOS results show that, at the same capacitance equivalent oxide thickness (CET) at inversion, replacing a poly-Si gate by metal reduces the gate leakage appreciably by one to two orders of magnitude due to the elimination of polysilicon gate depletion. It is also found that the work function /spl Phi//sub B/ of a metal gate affects tunneling characteristics in MOSFETs. It is particularly significant when the transistor is biased at accumulation. Specifically, the increase of /spl Phi//sub B/ reduces the gate-to-channel tunneling in off-biased n-FET and the use of a metal gate with midgap /spl Phi//sub B/ results in a significant reduction of gate to source/drain extension (SDE) tunneling in both n- and p-FETs. Compared to bulk FET, double gate (DG) FET has much lower off-state leakage due to the smaller gate to SDE tunneling. This reduction in off-state leakage can be as much as three orders of magnitude when high-/spl kappa/ gate dielectric is used. Finally, the benefits of employing metal gate DG structure in future CMOS scaling are discussed.
ISSN:0018-9383
1557-9646
DOI:10.1109/TED.2004.836544