Site-Selective sp2 C-H Cyanation of Allenes via Copper-Catalyzed Radical Relay
Compared with the extensively reported hydrogen atom transfer (HAT) at sp3 C-H, abstraction of hydrogen atoms at the sp2 carbon is extremely rare. Here, we communicate the site-selective cyanation of the sp2 C-H bond of allenes using the strategy of copper-catalyzed radical relay. The reactions affo...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2023-12, Vol.145 (48), p.25995-26002 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Compared with the extensively reported hydrogen atom transfer (HAT) at sp3 C-H, abstraction of hydrogen atoms at the sp2 carbon is extremely rare. Here, we communicate the site-selective cyanation of the sp2 C-H bond of allenes using the strategy of copper-catalyzed radical relay. The reactions afford various allenyl nitriles directly from simple allenes with a broad substrate scope and a remarkable functional group compatibility under mild conditions. These reactions exhibit excellent site-selectivity toward sp2 C-H, which can be attributed to the unique pocket created by the Cu-bound nitrogen-centered radical. The favorable HAT on sp2 C-H is due to crucial hydrogen bonding between the fluoride bonded to the Cu(II) center and the hydrogen atom at the allylic position. These features enable the late-stage functionalization of druglike bioactive molecules containing an allene motif. |
---|---|
ISSN: | 1520-5126 |
DOI: | 10.1021/jacs.3c11368 |