The neurovascular unit of capillary blood vessels in the rat nervous system. A rapid‐Golgi electron microscopy study

We describe a pericapillary organ in the rat forebrain and cerebellar cortex. It consists of a series of tripartite synapses with synaptic extensions enveloped by astrocytic endfeet that are linked to the capillary wall by synaptic extensions. Reciprocal specializations of the pericyte‐capillary blo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of comparative neurology (1911) 2024-02, Vol.532 (2), p.e25559-n/a
Hauptverfasser: Larriva‐Sahd, Jorge, Martínez‐Cabrera, Gema, Lozano‐Flores, Carlos, Concha, Luis, Varela‐Echavarría, Alfredo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We describe a pericapillary organ in the rat forebrain and cerebellar cortex. It consists of a series of tripartite synapses with synaptic extensions enveloped by astrocytic endfeet that are linked to the capillary wall by synaptic extensions. Reciprocal specializations of the pericyte‐capillary blood vessel (CBV) with such specialized synapses suggest a mechanoreceptor role. In Golgi‐impregnated and 3D reconstructions of the cerebral cortex and thalamus, a series of TSs appear to be sequentially ordered in a common dendrite, paralleled by synaptic outgrowths termed golf club synaptic extensions (GCE) opposed to a longitudinal crest (LC) from the capillary basal lamina (BL). Our results show that, in the cerebellar cortex, afferent fibers and interneurons display microanatomical structures that strongly suggest an interaction with the capillary wall. Afferent mossy fiber (MF) rosettes and ascending granule cell axons and their dendrites define the pericapillary passage interactions that are entangled by endfeet. The presence of mRNA of the mechanosensitive channel Piezo1 in the MF rosettes, together with the surrounding end‐feet and the capillary wall form mechanosensory units. The ubiquity of such units to modulate synaptic transmission is also supported by Piezo1 mRNA expressing pyramidal isocortical and thalamic neurons. This scenario suggests that ascending impulses to the cerebellar and cortical targets are presynaptically modulated by the reciprocal interaction with the mechanosensory pericapillary organ that ultimately modulates the vasomotor response. A set of pericapillary neuroglial specializations structure mechanoreceptors of capillary blood flow.
ISSN:0021-9967
1096-9861
DOI:10.1002/cne.25559