Evaluation of coaxial dipole antennas as transceiver elements of human head array for ultra‐high field MRI at 9.4T
Purpose The aim of this work is to evaluate a new eight‐channel transceiver (TxRx) coaxial dipole array for imaging of the human head at 9.4T developed to improve specific absorption rate (SAR) performance, and provide for a more compact and robust alternative to the state‐of‐the art dipole arrays....
Gespeichert in:
Veröffentlicht in: | Magnetic resonance in medicine 2024-03, Vol.91 (3), p.1268-1280 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1280 |
---|---|
container_issue | 3 |
container_start_page | 1268 |
container_title | Magnetic resonance in medicine |
container_volume | 91 |
creator | Solomakha, G. A. Bosch, D. Glang, F. Scheffler, K. Avdievich, N. I. |
description | Purpose
The aim of this work is to evaluate a new eight‐channel transceiver (TxRx) coaxial dipole array for imaging of the human head at 9.4T developed to improve specific absorption rate (SAR) performance, and provide for a more compact and robust alternative to the state‐of‐the art dipole arrays.
Methods
First, the geometry of a single coaxial element was optimized to minimize peak SAR and sensitivity to the load variation. Next, a multi‐tissue voxel model was used to numerically simulate a TxRx array coil that consisted of eight coaxial dipoles with the optimal configuration. Finally, we compared the developed array to other human head dipole arrays. Results of numerical simulations were verified on a bench and in the scanner including in vivo measurements on a healthy volunteer.
Results
The developed eight‐element coaxial dipole TxRx array coil showed up to 1.1times higher SAR‐efficiency than a similar in geometry folded‐end and fractionated dipole array while maintaining whole brain coverage and low sensitivity of the resonance frequency to variation in the head size.
Conclusion
As a proof of concept, we developed and constructed a prototype of a 9.4T (400 MHz) human head array consisting of eight TxRx coaxial dipoles. The developed array improved SAR‐efficiency and provided for a more compact and robust alternative to the folded‐end dipole design. To the best of our knowledge, this is the first example of using coaxial dipoles for human head MRI at ultra‐high field. |
doi_str_mv | 10.1002/mrm.29941 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2894722430</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2894722430</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3881-498e302f97cde10c834beba16e33ecb7062f74ae6c68a9be957d2cbb983aa4983</originalsourceid><addsrcrecordid>eNp10U9rFDEYBvAgil2rB7-ABLzoYbb5t5vJUUrVQheh1HN4J_OOm5JJ1mSmdW9-BD-jn8SsWz0IQiA5_N6HJA8hLzlbcsbE2ZjHpTBG8UdkwVdCNGJl1GOyYFqxRnKjTsizUm4ZY8Zo9ZScyPZwFHpBpos7CDNMPkWaBuoSfPMQaO93KSCFOGGMUGhdU4ZYHPo7zBQDjhinchjZziNEukXoKeQMezqkTOdQ-c_vP7b-y5YOHkNPN9eXFCZqlurmOXkyQCj44mE_JZ_fX9ycf2yuPn24PH931TjZtrxRpkXJxGC065Ez10rVYQd8jVKi6zRbi0ErwLVbt2A6NCvdC9d1ppUAdViekjfH3F1OX2cskx19fUIIEDHNxYrWKC2EkqzS1__Q2zTnWG9nhWGKSWn0qqq3R-VyKiXjYHfZj5D3ljN7qMLWKuzvKqp99ZA4dyP2f-Wfv6_g7AjufcD9_5Ps5npzjPwFWBKTnA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2904033975</pqid></control><display><type>article</type><title>Evaluation of coaxial dipole antennas as transceiver elements of human head array for ultra‐high field MRI at 9.4T</title><source>MEDLINE</source><source>Wiley Journals</source><creator>Solomakha, G. A. ; Bosch, D. ; Glang, F. ; Scheffler, K. ; Avdievich, N. I.</creator><creatorcontrib>Solomakha, G. A. ; Bosch, D. ; Glang, F. ; Scheffler, K. ; Avdievich, N. I.</creatorcontrib><description>Purpose
The aim of this work is to evaluate a new eight‐channel transceiver (TxRx) coaxial dipole array for imaging of the human head at 9.4T developed to improve specific absorption rate (SAR) performance, and provide for a more compact and robust alternative to the state‐of‐the art dipole arrays.
Methods
First, the geometry of a single coaxial element was optimized to minimize peak SAR and sensitivity to the load variation. Next, a multi‐tissue voxel model was used to numerically simulate a TxRx array coil that consisted of eight coaxial dipoles with the optimal configuration. Finally, we compared the developed array to other human head dipole arrays. Results of numerical simulations were verified on a bench and in the scanner including in vivo measurements on a healthy volunteer.
Results
The developed eight‐element coaxial dipole TxRx array coil showed up to 1.1times higher SAR‐efficiency than a similar in geometry folded‐end and fractionated dipole array while maintaining whole brain coverage and low sensitivity of the resonance frequency to variation in the head size.
Conclusion
As a proof of concept, we developed and constructed a prototype of a 9.4T (400 MHz) human head array consisting of eight TxRx coaxial dipoles. The developed array improved SAR‐efficiency and provided for a more compact and robust alternative to the folded‐end dipole design. To the best of our knowledge, this is the first example of using coaxial dipoles for human head MRI at ultra‐high field.</description><identifier>ISSN: 0740-3194</identifier><identifier>EISSN: 1522-2594</identifier><identifier>DOI: 10.1002/mrm.29941</identifier><identifier>PMID: 38009927</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Brain - diagnostic imaging ; coaxial‐dipole ; Coils ; Dipole antennas ; Equipment Design ; Frequency variation ; Head ; Head - diagnostic imaging ; Humans ; Load fluctuation ; Magnetic resonance imaging ; Magnetic Resonance Imaging - methods ; Mathematical models ; Neuroimaging ; Phantoms, Imaging ; RF head array ; Robustness (mathematics) ; SAR‐efficiency ; Sensitivity ; ultra‐high field MRI</subject><ispartof>Magnetic resonance in medicine, 2024-03, Vol.91 (3), p.1268-1280</ispartof><rights>2023 The Authors. published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.</rights><rights>2023 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3881-498e302f97cde10c834beba16e33ecb7062f74ae6c68a9be957d2cbb983aa4983</citedby><cites>FETCH-LOGICAL-c3881-498e302f97cde10c834beba16e33ecb7062f74ae6c68a9be957d2cbb983aa4983</cites><orcidid>0000-0003-3506-4947 ; 0000-0002-3024-0545 ; 0000-0001-6316-8773 ; 0000-0002-6537-6370 ; 0000-0001-7608-0869</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmrm.29941$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmrm.29941$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38009927$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Solomakha, G. A.</creatorcontrib><creatorcontrib>Bosch, D.</creatorcontrib><creatorcontrib>Glang, F.</creatorcontrib><creatorcontrib>Scheffler, K.</creatorcontrib><creatorcontrib>Avdievich, N. I.</creatorcontrib><title>Evaluation of coaxial dipole antennas as transceiver elements of human head array for ultra‐high field MRI at 9.4T</title><title>Magnetic resonance in medicine</title><addtitle>Magn Reson Med</addtitle><description>Purpose
The aim of this work is to evaluate a new eight‐channel transceiver (TxRx) coaxial dipole array for imaging of the human head at 9.4T developed to improve specific absorption rate (SAR) performance, and provide for a more compact and robust alternative to the state‐of‐the art dipole arrays.
Methods
First, the geometry of a single coaxial element was optimized to minimize peak SAR and sensitivity to the load variation. Next, a multi‐tissue voxel model was used to numerically simulate a TxRx array coil that consisted of eight coaxial dipoles with the optimal configuration. Finally, we compared the developed array to other human head dipole arrays. Results of numerical simulations were verified on a bench and in the scanner including in vivo measurements on a healthy volunteer.
Results
The developed eight‐element coaxial dipole TxRx array coil showed up to 1.1times higher SAR‐efficiency than a similar in geometry folded‐end and fractionated dipole array while maintaining whole brain coverage and low sensitivity of the resonance frequency to variation in the head size.
Conclusion
As a proof of concept, we developed and constructed a prototype of a 9.4T (400 MHz) human head array consisting of eight TxRx coaxial dipoles. The developed array improved SAR‐efficiency and provided for a more compact and robust alternative to the folded‐end dipole design. To the best of our knowledge, this is the first example of using coaxial dipoles for human head MRI at ultra‐high field.</description><subject>Brain - diagnostic imaging</subject><subject>coaxial‐dipole</subject><subject>Coils</subject><subject>Dipole antennas</subject><subject>Equipment Design</subject><subject>Frequency variation</subject><subject>Head</subject><subject>Head - diagnostic imaging</subject><subject>Humans</subject><subject>Load fluctuation</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Mathematical models</subject><subject>Neuroimaging</subject><subject>Phantoms, Imaging</subject><subject>RF head array</subject><subject>Robustness (mathematics)</subject><subject>SAR‐efficiency</subject><subject>Sensitivity</subject><subject>ultra‐high field MRI</subject><issn>0740-3194</issn><issn>1522-2594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNp10U9rFDEYBvAgil2rB7-ABLzoYbb5t5vJUUrVQheh1HN4J_OOm5JJ1mSmdW9-BD-jn8SsWz0IQiA5_N6HJA8hLzlbcsbE2ZjHpTBG8UdkwVdCNGJl1GOyYFqxRnKjTsizUm4ZY8Zo9ZScyPZwFHpBpos7CDNMPkWaBuoSfPMQaO93KSCFOGGMUGhdU4ZYHPo7zBQDjhinchjZziNEukXoKeQMezqkTOdQ-c_vP7b-y5YOHkNPN9eXFCZqlurmOXkyQCj44mE_JZ_fX9ycf2yuPn24PH931TjZtrxRpkXJxGC065Ez10rVYQd8jVKi6zRbi0ErwLVbt2A6NCvdC9d1ppUAdViekjfH3F1OX2cskx19fUIIEDHNxYrWKC2EkqzS1__Q2zTnWG9nhWGKSWn0qqq3R-VyKiXjYHfZj5D3ljN7qMLWKuzvKqp99ZA4dyP2f-Wfv6_g7AjufcD9_5Ps5npzjPwFWBKTnA</recordid><startdate>202403</startdate><enddate>202403</enddate><creator>Solomakha, G. A.</creator><creator>Bosch, D.</creator><creator>Glang, F.</creator><creator>Scheffler, K.</creator><creator>Avdievich, N. I.</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>M7Z</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3506-4947</orcidid><orcidid>https://orcid.org/0000-0002-3024-0545</orcidid><orcidid>https://orcid.org/0000-0001-6316-8773</orcidid><orcidid>https://orcid.org/0000-0002-6537-6370</orcidid><orcidid>https://orcid.org/0000-0001-7608-0869</orcidid></search><sort><creationdate>202403</creationdate><title>Evaluation of coaxial dipole antennas as transceiver elements of human head array for ultra‐high field MRI at 9.4T</title><author>Solomakha, G. A. ; Bosch, D. ; Glang, F. ; Scheffler, K. ; Avdievich, N. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3881-498e302f97cde10c834beba16e33ecb7062f74ae6c68a9be957d2cbb983aa4983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Brain - diagnostic imaging</topic><topic>coaxial‐dipole</topic><topic>Coils</topic><topic>Dipole antennas</topic><topic>Equipment Design</topic><topic>Frequency variation</topic><topic>Head</topic><topic>Head - diagnostic imaging</topic><topic>Humans</topic><topic>Load fluctuation</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Mathematical models</topic><topic>Neuroimaging</topic><topic>Phantoms, Imaging</topic><topic>RF head array</topic><topic>Robustness (mathematics)</topic><topic>SAR‐efficiency</topic><topic>Sensitivity</topic><topic>ultra‐high field MRI</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Solomakha, G. A.</creatorcontrib><creatorcontrib>Bosch, D.</creatorcontrib><creatorcontrib>Glang, F.</creatorcontrib><creatorcontrib>Scheffler, K.</creatorcontrib><creatorcontrib>Avdievich, N. I.</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biochemistry Abstracts 1</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Magnetic resonance in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Solomakha, G. A.</au><au>Bosch, D.</au><au>Glang, F.</au><au>Scheffler, K.</au><au>Avdievich, N. I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluation of coaxial dipole antennas as transceiver elements of human head array for ultra‐high field MRI at 9.4T</atitle><jtitle>Magnetic resonance in medicine</jtitle><addtitle>Magn Reson Med</addtitle><date>2024-03</date><risdate>2024</risdate><volume>91</volume><issue>3</issue><spage>1268</spage><epage>1280</epage><pages>1268-1280</pages><issn>0740-3194</issn><eissn>1522-2594</eissn><abstract>Purpose
The aim of this work is to evaluate a new eight‐channel transceiver (TxRx) coaxial dipole array for imaging of the human head at 9.4T developed to improve specific absorption rate (SAR) performance, and provide for a more compact and robust alternative to the state‐of‐the art dipole arrays.
Methods
First, the geometry of a single coaxial element was optimized to minimize peak SAR and sensitivity to the load variation. Next, a multi‐tissue voxel model was used to numerically simulate a TxRx array coil that consisted of eight coaxial dipoles with the optimal configuration. Finally, we compared the developed array to other human head dipole arrays. Results of numerical simulations were verified on a bench and in the scanner including in vivo measurements on a healthy volunteer.
Results
The developed eight‐element coaxial dipole TxRx array coil showed up to 1.1times higher SAR‐efficiency than a similar in geometry folded‐end and fractionated dipole array while maintaining whole brain coverage and low sensitivity of the resonance frequency to variation in the head size.
Conclusion
As a proof of concept, we developed and constructed a prototype of a 9.4T (400 MHz) human head array consisting of eight TxRx coaxial dipoles. The developed array improved SAR‐efficiency and provided for a more compact and robust alternative to the folded‐end dipole design. To the best of our knowledge, this is the first example of using coaxial dipoles for human head MRI at ultra‐high field.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38009927</pmid><doi>10.1002/mrm.29941</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-3506-4947</orcidid><orcidid>https://orcid.org/0000-0002-3024-0545</orcidid><orcidid>https://orcid.org/0000-0001-6316-8773</orcidid><orcidid>https://orcid.org/0000-0002-6537-6370</orcidid><orcidid>https://orcid.org/0000-0001-7608-0869</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0740-3194 |
ispartof | Magnetic resonance in medicine, 2024-03, Vol.91 (3), p.1268-1280 |
issn | 0740-3194 1522-2594 |
language | eng |
recordid | cdi_proquest_miscellaneous_2894722430 |
source | MEDLINE; Wiley Journals |
subjects | Brain - diagnostic imaging coaxial‐dipole Coils Dipole antennas Equipment Design Frequency variation Head Head - diagnostic imaging Humans Load fluctuation Magnetic resonance imaging Magnetic Resonance Imaging - methods Mathematical models Neuroimaging Phantoms, Imaging RF head array Robustness (mathematics) SAR‐efficiency Sensitivity ultra‐high field MRI |
title | Evaluation of coaxial dipole antennas as transceiver elements of human head array for ultra‐high field MRI at 9.4T |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T22%3A52%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluation%20of%20coaxial%20dipole%20antennas%20as%20transceiver%20elements%20of%20human%20head%20array%20for%20ultra%E2%80%90high%20field%20MRI%20at%209.4T&rft.jtitle=Magnetic%20resonance%20in%20medicine&rft.au=Solomakha,%20G.%20A.&rft.date=2024-03&rft.volume=91&rft.issue=3&rft.spage=1268&rft.epage=1280&rft.pages=1268-1280&rft.issn=0740-3194&rft.eissn=1522-2594&rft_id=info:doi/10.1002/mrm.29941&rft_dat=%3Cproquest_cross%3E2894722430%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2904033975&rft_id=info:pmid/38009927&rfr_iscdi=true |