Evaluation of coaxial dipole antennas as transceiver elements of human head array for ultra‐high field MRI at 9.4T

Purpose The aim of this work is to evaluate a new eight‐channel transceiver (TxRx) coaxial dipole array for imaging of the human head at 9.4T developed to improve specific absorption rate (SAR) performance, and provide for a more compact and robust alternative to the state‐of‐the art dipole arrays....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Magnetic resonance in medicine 2024-03, Vol.91 (3), p.1268-1280
Hauptverfasser: Solomakha, G. A., Bosch, D., Glang, F., Scheffler, K., Avdievich, N. I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1280
container_issue 3
container_start_page 1268
container_title Magnetic resonance in medicine
container_volume 91
creator Solomakha, G. A.
Bosch, D.
Glang, F.
Scheffler, K.
Avdievich, N. I.
description Purpose The aim of this work is to evaluate a new eight‐channel transceiver (TxRx) coaxial dipole array for imaging of the human head at 9.4T developed to improve specific absorption rate (SAR) performance, and provide for a more compact and robust alternative to the state‐of‐the art dipole arrays. Methods First, the geometry of a single coaxial element was optimized to minimize peak SAR and sensitivity to the load variation. Next, a multi‐tissue voxel model was used to numerically simulate a TxRx array coil that consisted of eight coaxial dipoles with the optimal configuration. Finally, we compared the developed array to other human head dipole arrays. Results of numerical simulations were verified on a bench and in the scanner including in vivo measurements on a healthy volunteer. Results The developed eight‐element coaxial dipole TxRx array coil showed up to 1.1times higher SAR‐efficiency than a similar in geometry folded‐end and fractionated dipole array while maintaining whole brain coverage and low sensitivity of the resonance frequency to variation in the head size. Conclusion As a proof of concept, we developed and constructed a prototype of a 9.4T (400 MHz) human head array consisting of eight TxRx coaxial dipoles. The developed array improved SAR‐efficiency and provided for a more compact and robust alternative to the folded‐end dipole design. To the best of our knowledge, this is the first example of using coaxial dipoles for human head MRI at ultra‐high field.
doi_str_mv 10.1002/mrm.29941
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2894722430</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2894722430</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3881-498e302f97cde10c834beba16e33ecb7062f74ae6c68a9be957d2cbb983aa4983</originalsourceid><addsrcrecordid>eNp10U9rFDEYBvAgil2rB7-ABLzoYbb5t5vJUUrVQheh1HN4J_OOm5JJ1mSmdW9-BD-jn8SsWz0IQiA5_N6HJA8hLzlbcsbE2ZjHpTBG8UdkwVdCNGJl1GOyYFqxRnKjTsizUm4ZY8Zo9ZScyPZwFHpBpos7CDNMPkWaBuoSfPMQaO93KSCFOGGMUGhdU4ZYHPo7zBQDjhinchjZziNEukXoKeQMezqkTOdQ-c_vP7b-y5YOHkNPN9eXFCZqlurmOXkyQCj44mE_JZ_fX9ycf2yuPn24PH931TjZtrxRpkXJxGC065Ez10rVYQd8jVKi6zRbi0ErwLVbt2A6NCvdC9d1ppUAdViekjfH3F1OX2cskx19fUIIEDHNxYrWKC2EkqzS1__Q2zTnWG9nhWGKSWn0qqq3R-VyKiXjYHfZj5D3ljN7qMLWKuzvKqp99ZA4dyP2f-Wfv6_g7AjufcD9_5Ps5npzjPwFWBKTnA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2904033975</pqid></control><display><type>article</type><title>Evaluation of coaxial dipole antennas as transceiver elements of human head array for ultra‐high field MRI at 9.4T</title><source>MEDLINE</source><source>Wiley Journals</source><creator>Solomakha, G. A. ; Bosch, D. ; Glang, F. ; Scheffler, K. ; Avdievich, N. I.</creator><creatorcontrib>Solomakha, G. A. ; Bosch, D. ; Glang, F. ; Scheffler, K. ; Avdievich, N. I.</creatorcontrib><description>Purpose The aim of this work is to evaluate a new eight‐channel transceiver (TxRx) coaxial dipole array for imaging of the human head at 9.4T developed to improve specific absorption rate (SAR) performance, and provide for a more compact and robust alternative to the state‐of‐the art dipole arrays. Methods First, the geometry of a single coaxial element was optimized to minimize peak SAR and sensitivity to the load variation. Next, a multi‐tissue voxel model was used to numerically simulate a TxRx array coil that consisted of eight coaxial dipoles with the optimal configuration. Finally, we compared the developed array to other human head dipole arrays. Results of numerical simulations were verified on a bench and in the scanner including in vivo measurements on a healthy volunteer. Results The developed eight‐element coaxial dipole TxRx array coil showed up to 1.1times higher SAR‐efficiency than a similar in geometry folded‐end and fractionated dipole array while maintaining whole brain coverage and low sensitivity of the resonance frequency to variation in the head size. Conclusion As a proof of concept, we developed and constructed a prototype of a 9.4T (400 MHz) human head array consisting of eight TxRx coaxial dipoles. The developed array improved SAR‐efficiency and provided for a more compact and robust alternative to the folded‐end dipole design. To the best of our knowledge, this is the first example of using coaxial dipoles for human head MRI at ultra‐high field.</description><identifier>ISSN: 0740-3194</identifier><identifier>EISSN: 1522-2594</identifier><identifier>DOI: 10.1002/mrm.29941</identifier><identifier>PMID: 38009927</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Brain - diagnostic imaging ; coaxial‐dipole ; Coils ; Dipole antennas ; Equipment Design ; Frequency variation ; Head ; Head - diagnostic imaging ; Humans ; Load fluctuation ; Magnetic resonance imaging ; Magnetic Resonance Imaging - methods ; Mathematical models ; Neuroimaging ; Phantoms, Imaging ; RF head array ; Robustness (mathematics) ; SAR‐efficiency ; Sensitivity ; ultra‐high field MRI</subject><ispartof>Magnetic resonance in medicine, 2024-03, Vol.91 (3), p.1268-1280</ispartof><rights>2023 The Authors. published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.</rights><rights>2023 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3881-498e302f97cde10c834beba16e33ecb7062f74ae6c68a9be957d2cbb983aa4983</citedby><cites>FETCH-LOGICAL-c3881-498e302f97cde10c834beba16e33ecb7062f74ae6c68a9be957d2cbb983aa4983</cites><orcidid>0000-0003-3506-4947 ; 0000-0002-3024-0545 ; 0000-0001-6316-8773 ; 0000-0002-6537-6370 ; 0000-0001-7608-0869</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmrm.29941$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmrm.29941$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38009927$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Solomakha, G. A.</creatorcontrib><creatorcontrib>Bosch, D.</creatorcontrib><creatorcontrib>Glang, F.</creatorcontrib><creatorcontrib>Scheffler, K.</creatorcontrib><creatorcontrib>Avdievich, N. I.</creatorcontrib><title>Evaluation of coaxial dipole antennas as transceiver elements of human head array for ultra‐high field MRI at 9.4T</title><title>Magnetic resonance in medicine</title><addtitle>Magn Reson Med</addtitle><description>Purpose The aim of this work is to evaluate a new eight‐channel transceiver (TxRx) coaxial dipole array for imaging of the human head at 9.4T developed to improve specific absorption rate (SAR) performance, and provide for a more compact and robust alternative to the state‐of‐the art dipole arrays. Methods First, the geometry of a single coaxial element was optimized to minimize peak SAR and sensitivity to the load variation. Next, a multi‐tissue voxel model was used to numerically simulate a TxRx array coil that consisted of eight coaxial dipoles with the optimal configuration. Finally, we compared the developed array to other human head dipole arrays. Results of numerical simulations were verified on a bench and in the scanner including in vivo measurements on a healthy volunteer. Results The developed eight‐element coaxial dipole TxRx array coil showed up to 1.1times higher SAR‐efficiency than a similar in geometry folded‐end and fractionated dipole array while maintaining whole brain coverage and low sensitivity of the resonance frequency to variation in the head size. Conclusion As a proof of concept, we developed and constructed a prototype of a 9.4T (400 MHz) human head array consisting of eight TxRx coaxial dipoles. The developed array improved SAR‐efficiency and provided for a more compact and robust alternative to the folded‐end dipole design. To the best of our knowledge, this is the first example of using coaxial dipoles for human head MRI at ultra‐high field.</description><subject>Brain - diagnostic imaging</subject><subject>coaxial‐dipole</subject><subject>Coils</subject><subject>Dipole antennas</subject><subject>Equipment Design</subject><subject>Frequency variation</subject><subject>Head</subject><subject>Head - diagnostic imaging</subject><subject>Humans</subject><subject>Load fluctuation</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Mathematical models</subject><subject>Neuroimaging</subject><subject>Phantoms, Imaging</subject><subject>RF head array</subject><subject>Robustness (mathematics)</subject><subject>SAR‐efficiency</subject><subject>Sensitivity</subject><subject>ultra‐high field MRI</subject><issn>0740-3194</issn><issn>1522-2594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNp10U9rFDEYBvAgil2rB7-ABLzoYbb5t5vJUUrVQheh1HN4J_OOm5JJ1mSmdW9-BD-jn8SsWz0IQiA5_N6HJA8hLzlbcsbE2ZjHpTBG8UdkwVdCNGJl1GOyYFqxRnKjTsizUm4ZY8Zo9ZScyPZwFHpBpos7CDNMPkWaBuoSfPMQaO93KSCFOGGMUGhdU4ZYHPo7zBQDjhinchjZziNEukXoKeQMezqkTOdQ-c_vP7b-y5YOHkNPN9eXFCZqlurmOXkyQCj44mE_JZ_fX9ycf2yuPn24PH931TjZtrxRpkXJxGC065Ez10rVYQd8jVKi6zRbi0ErwLVbt2A6NCvdC9d1ppUAdViekjfH3F1OX2cskx19fUIIEDHNxYrWKC2EkqzS1__Q2zTnWG9nhWGKSWn0qqq3R-VyKiXjYHfZj5D3ljN7qMLWKuzvKqp99ZA4dyP2f-Wfv6_g7AjufcD9_5Ps5npzjPwFWBKTnA</recordid><startdate>202403</startdate><enddate>202403</enddate><creator>Solomakha, G. A.</creator><creator>Bosch, D.</creator><creator>Glang, F.</creator><creator>Scheffler, K.</creator><creator>Avdievich, N. I.</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>M7Z</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3506-4947</orcidid><orcidid>https://orcid.org/0000-0002-3024-0545</orcidid><orcidid>https://orcid.org/0000-0001-6316-8773</orcidid><orcidid>https://orcid.org/0000-0002-6537-6370</orcidid><orcidid>https://orcid.org/0000-0001-7608-0869</orcidid></search><sort><creationdate>202403</creationdate><title>Evaluation of coaxial dipole antennas as transceiver elements of human head array for ultra‐high field MRI at 9.4T</title><author>Solomakha, G. A. ; Bosch, D. ; Glang, F. ; Scheffler, K. ; Avdievich, N. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3881-498e302f97cde10c834beba16e33ecb7062f74ae6c68a9be957d2cbb983aa4983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Brain - diagnostic imaging</topic><topic>coaxial‐dipole</topic><topic>Coils</topic><topic>Dipole antennas</topic><topic>Equipment Design</topic><topic>Frequency variation</topic><topic>Head</topic><topic>Head - diagnostic imaging</topic><topic>Humans</topic><topic>Load fluctuation</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Mathematical models</topic><topic>Neuroimaging</topic><topic>Phantoms, Imaging</topic><topic>RF head array</topic><topic>Robustness (mathematics)</topic><topic>SAR‐efficiency</topic><topic>Sensitivity</topic><topic>ultra‐high field MRI</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Solomakha, G. A.</creatorcontrib><creatorcontrib>Bosch, D.</creatorcontrib><creatorcontrib>Glang, F.</creatorcontrib><creatorcontrib>Scheffler, K.</creatorcontrib><creatorcontrib>Avdievich, N. I.</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biochemistry Abstracts 1</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Magnetic resonance in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Solomakha, G. A.</au><au>Bosch, D.</au><au>Glang, F.</au><au>Scheffler, K.</au><au>Avdievich, N. I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluation of coaxial dipole antennas as transceiver elements of human head array for ultra‐high field MRI at 9.4T</atitle><jtitle>Magnetic resonance in medicine</jtitle><addtitle>Magn Reson Med</addtitle><date>2024-03</date><risdate>2024</risdate><volume>91</volume><issue>3</issue><spage>1268</spage><epage>1280</epage><pages>1268-1280</pages><issn>0740-3194</issn><eissn>1522-2594</eissn><abstract>Purpose The aim of this work is to evaluate a new eight‐channel transceiver (TxRx) coaxial dipole array for imaging of the human head at 9.4T developed to improve specific absorption rate (SAR) performance, and provide for a more compact and robust alternative to the state‐of‐the art dipole arrays. Methods First, the geometry of a single coaxial element was optimized to minimize peak SAR and sensitivity to the load variation. Next, a multi‐tissue voxel model was used to numerically simulate a TxRx array coil that consisted of eight coaxial dipoles with the optimal configuration. Finally, we compared the developed array to other human head dipole arrays. Results of numerical simulations were verified on a bench and in the scanner including in vivo measurements on a healthy volunteer. Results The developed eight‐element coaxial dipole TxRx array coil showed up to 1.1times higher SAR‐efficiency than a similar in geometry folded‐end and fractionated dipole array while maintaining whole brain coverage and low sensitivity of the resonance frequency to variation in the head size. Conclusion As a proof of concept, we developed and constructed a prototype of a 9.4T (400 MHz) human head array consisting of eight TxRx coaxial dipoles. The developed array improved SAR‐efficiency and provided for a more compact and robust alternative to the folded‐end dipole design. To the best of our knowledge, this is the first example of using coaxial dipoles for human head MRI at ultra‐high field.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38009927</pmid><doi>10.1002/mrm.29941</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-3506-4947</orcidid><orcidid>https://orcid.org/0000-0002-3024-0545</orcidid><orcidid>https://orcid.org/0000-0001-6316-8773</orcidid><orcidid>https://orcid.org/0000-0002-6537-6370</orcidid><orcidid>https://orcid.org/0000-0001-7608-0869</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0740-3194
ispartof Magnetic resonance in medicine, 2024-03, Vol.91 (3), p.1268-1280
issn 0740-3194
1522-2594
language eng
recordid cdi_proquest_miscellaneous_2894722430
source MEDLINE; Wiley Journals
subjects Brain - diagnostic imaging
coaxial‐dipole
Coils
Dipole antennas
Equipment Design
Frequency variation
Head
Head - diagnostic imaging
Humans
Load fluctuation
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Mathematical models
Neuroimaging
Phantoms, Imaging
RF head array
Robustness (mathematics)
SAR‐efficiency
Sensitivity
ultra‐high field MRI
title Evaluation of coaxial dipole antennas as transceiver elements of human head array for ultra‐high field MRI at 9.4T
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T22%3A52%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluation%20of%20coaxial%20dipole%20antennas%20as%20transceiver%20elements%20of%20human%20head%20array%20for%20ultra%E2%80%90high%20field%20MRI%20at%209.4T&rft.jtitle=Magnetic%20resonance%20in%20medicine&rft.au=Solomakha,%20G.%20A.&rft.date=2024-03&rft.volume=91&rft.issue=3&rft.spage=1268&rft.epage=1280&rft.pages=1268-1280&rft.issn=0740-3194&rft.eissn=1522-2594&rft_id=info:doi/10.1002/mrm.29941&rft_dat=%3Cproquest_cross%3E2894722430%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2904033975&rft_id=info:pmid/38009927&rfr_iscdi=true