Evaluation of coaxial dipole antennas as transceiver elements of human head array for ultra‐high field MRI at 9.4T
Purpose The aim of this work is to evaluate a new eight‐channel transceiver (TxRx) coaxial dipole array for imaging of the human head at 9.4T developed to improve specific absorption rate (SAR) performance, and provide for a more compact and robust alternative to the state‐of‐the art dipole arrays....
Gespeichert in:
Veröffentlicht in: | Magnetic resonance in medicine 2024-03, Vol.91 (3), p.1268-1280 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Purpose
The aim of this work is to evaluate a new eight‐channel transceiver (TxRx) coaxial dipole array for imaging of the human head at 9.4T developed to improve specific absorption rate (SAR) performance, and provide for a more compact and robust alternative to the state‐of‐the art dipole arrays.
Methods
First, the geometry of a single coaxial element was optimized to minimize peak SAR and sensitivity to the load variation. Next, a multi‐tissue voxel model was used to numerically simulate a TxRx array coil that consisted of eight coaxial dipoles with the optimal configuration. Finally, we compared the developed array to other human head dipole arrays. Results of numerical simulations were verified on a bench and in the scanner including in vivo measurements on a healthy volunteer.
Results
The developed eight‐element coaxial dipole TxRx array coil showed up to 1.1times higher SAR‐efficiency than a similar in geometry folded‐end and fractionated dipole array while maintaining whole brain coverage and low sensitivity of the resonance frequency to variation in the head size.
Conclusion
As a proof of concept, we developed and constructed a prototype of a 9.4T (400 MHz) human head array consisting of eight TxRx coaxial dipoles. The developed array improved SAR‐efficiency and provided for a more compact and robust alternative to the folded‐end dipole design. To the best of our knowledge, this is the first example of using coaxial dipoles for human head MRI at ultra‐high field. |
---|---|
ISSN: | 0740-3194 1522-2594 |
DOI: | 10.1002/mrm.29941 |