Live Imaging of 3D Hanging Drop Arrays through Manipulation of Light-Responsive Pyroelectric Slippery Surface and Chip Adhesion

Three-dimensional (3D) hanging drop cell culture is widely used in organoid culture because of its lack of selection pressure and rapid cell aggregation. However, current hanging drop technology has limitations, such as a dependence on complex microfluidic transport channels or specific capillary fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2023-12, Vol.23 (23), p.10710-10718
Hauptverfasser: Zhou, Shuneng, Yang, Junfeng, Li, Rui, Chen, Yiyu, Li, Chengpan, Chen, Chao, Tao, Yuan, Fan, Shengying, Wu, Dong, Wen, Li, Qiu, Bensheng, Ding, Weiping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Three-dimensional (3D) hanging drop cell culture is widely used in organoid culture because of its lack of selection pressure and rapid cell aggregation. However, current hanging drop technology has limitations, such as a dependence on complex microfluidic transport channels or specific capillary force templates for drop formation, which leads to unchangeable drop features. These methods also hinder live imaging because of space and complexity constraints. Here, we have developed a hanging drop construction method and created a flexible 3D hanging drop construction platform composed of a manipulation module and an adhesion module. Their harmonious operation allows for the easy construction of hanging drops of varying sizes, types, and patterns. Our platform produces a cell hanging drop chip with small sizes and clear fields of view, thereby making it compatible with live imaging. This platform has great potential for personalized medicine, cancer and drug discovery, tissue engineering, and stem cell research.
ISSN:1530-6984
1530-6992
DOI:10.1021/acs.nanolett.3c02570