Maternal supplementation of alpha-lipoic acid ameliorates prenatal cytarabine-induced mutilation in reproductive development and function in F1 male adult rats
Aims Cytarabine (CYT), a prevalent anticancer drug for blood cancers, detrimentally affects male reproductive development and function. Alpha-lipoic acid (ALA), a universal antioxidant, offers defense against chemical-induced reproductive dysfunction. Our study sought to explore ALA's protectiv...
Gespeichert in:
Veröffentlicht in: | Naunyn-Schmiedeberg's archives of pharmacology 2024-06, Vol.397 (6), p.4035-4053 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Aims
Cytarabine (CYT), a prevalent anticancer drug for blood cancers, detrimentally affects male reproductive development and function. Alpha-lipoic acid (ALA), a universal antioxidant, offers defense against chemical-induced reproductive dysfunction. Our study sought to explore ALA's protective role against prenatal CYT-induced reproductive impairment in F1 male adult rats.
Main methods
Pregnant rats were divided into 5 groups and administered normal saline, ALA 200 mg/kg, CYT 12.5 mg/kg, CYT 25 mg/kg, and CYT 25 mg/kg + ALA 200 mg/ kg from gestational day 8 to 21. On postnatal day 73, F1 male rats were sacrificed, and general, oxidative, steroidogenic, spermatogenic, histological, and morphometrical parameters were evaluated.
Key findings
Prenatal CYT caused dose-dependent reductions in body weight, testis, and accessory gland weights; elevated oxidative stress; delayed puberty onset; sperm anomalies (decreased count, motility, viability, seminal fructose; increased morphological anomalies); impeded steroidogenesis (lower testosterone, follicle-stimulating hormone, luteinizing hormone, 3β-Hydroxysteroid dehydrogenase(HSD), 17β-HSD, and elevated cholesterol); and testicular histopathological and morphometric disturbances. Maternal supplementation of ALA was found to alleviate all the CYT-induced reproductive disruptions.
Significance
The present work accentuates the beneficial actions of ALA against CYT-induced impairment in reproductive development and functions by combating disruptions in oxidative balance, steroidogenesis, spermatogenesis, and testicular histological aberrations. However, future experimental and clinical studies are warranted to explore the molecular mechanisms involved in the ALA’s protection against prenatal CYT-induced testicular injury.
Graphical Abstract |
---|---|
ISSN: | 0028-1298 1432-1912 1432-1912 |
DOI: | 10.1007/s00210-023-02852-4 |