Procyanidin alleviates ferroptosis and inflammation of LPS-induced RAW264.7 cell via the Nrf2/HO-1 pathway
Inflammation is a common occurrence in many medical conditions and is a natural defense mechanism of the human body. Ferroptosis, an iron-dependent form of cell death related to lipid peroxide build-up, has been found to be involved in inflammation. The anti-inflammatory effects of procyanidin, howe...
Gespeichert in:
Veröffentlicht in: | Naunyn-Schmiedeberg's archives of pharmacology 2024-06, Vol.397 (6), p.4055-4067 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Inflammation is a common occurrence in many medical conditions and is a natural defense mechanism of the human body. Ferroptosis, an iron-dependent form of cell death related to lipid peroxide build-up, has been found to be involved in inflammation. The anti-inflammatory effects of procyanidin, however, are not yet fully understood. Through network pharmacology and bioinformatics analysis, it was suggested that procyanidin could modulate ferroptosis and cause anti-inflammatory effects on RAW264.7 cells. This was further evidenced through molecular docking, molecular dynamics, and in vitro experiments. The results indicated that procyanidin could diminish inflammation in LPS-induced RAW264.7 cells by regulating ferroptosis via the Nrf2/HO-1/Keap-1 pathway. In conclusion, procyanidin supplementation might be an effective way to reduce inflammation by decreasing the release of inflammatory cytokines and suppressing ferroptosis. |
---|---|
ISSN: | 0028-1298 1432-1912 1432-1912 |
DOI: | 10.1007/s00210-023-02854-2 |