Functional multiple-output decomposition with application to technology mapping for lookup table-based FPGAs
Functional decomposition is an important technique for technology mapping to look up table-based FPGA architectures. We present the theory of and a novel approach to functional disjoint decomposition of multiple-output functions, in which common subfunctions are extracted during technology mapping....
Gespeichert in:
Veröffentlicht in: | ACM transactions on design automation of electronic systems 1999-07, Vol.4 (3), p.313-350 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Functional decomposition is an important technique for technology mapping to look up table-based FPGA architectures. We present the theory of and a novel approach to functional disjoint decomposition of multiple-output functions, in which common subfunctions are extracted during technology mapping. While a Boolean function usually has a very large number of subfunctions, we show that not all of them are useful for multiple-output decomposition. We use a partition of the set of bound set vertices as the basis to compute preferable decomposition functions, which are sufficient for an optimal multiple-output decomposition. We propose several new algorithms that deal with central issues of functional multiple-output decomposition. First, an efficient algorithm to solve the variable partitioning problem is described. Second, we show how to implicitly compute all preferable functions of a single-output function and how to identify all common preferable functions of a multiple-output function. Due to implicit computation in the crucial steps, the algorithm is very efficient. Experimental results show significant reductions in area. |
---|---|
ISSN: | 1084-4309 1557-7309 |
DOI: | 10.1145/315773.315783 |