Targeted delivery of genistein for pancreatic cancer treatment using hyaluronic-coated cubosomes bioactivated with frankincense oil

Pancreatic cancer is an aggressive malignancy that remains a major cause of cancer-related deaths. Research for innovative anticancer therapeutic options is thus imperative. In this regard, phytotherapeutics offer great promise as efficient treatment modalities, especially leveraging nanodrug delive...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of pharmaceutics 2024-01, Vol.649, p.123637-123637, Article 123637
Hauptverfasser: Sallam, Nourhan G, Boraie, Nabila A, Sheta, Eman, El-Habashy, Salma E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Pancreatic cancer is an aggressive malignancy that remains a major cause of cancer-related deaths. Research for innovative anticancer therapeutic options is thus imperative. In this regard, phytotherapeutics offer great promise as efficient treatment modalities, especially leveraging nanodrug delivery. Herein, we innovatively coloaded the flavonoid genistein (Gen) and frankincense essential oil (FO) within cubosomes, which were then coated with the bioactive ligand hyaluronic acid (HA/Gen-FO-Cub) for active-targeting of pancreatic cancer. The novel HA/Gen-FO-Cub displayed optimum nanosize (198.2 ± 4.5 nm), PDI (0.27 ± 0.01), zeta-potential (-34.7 ± 1.2 mV), Gen entrapment (99.3 ± 0.01 %), and controlled Gen release (43.7 ± 1.2 % after 120 h). HA/Gen-FO-Cub exerted selective anticancer activity on pancreatic cancer cells (PANC-1; 8-fold drop in IC ), cellular uptake and anti-migratory effect compared to Gen solution. HA/Gen-FO-Cub revealed prominent cytocompatibility (100 ± 5.9 % viability of human dermal fibroblast). Moreover, HA/Gen-FO-Cub boosted the in vivo anticancer activity of Gen in an orthotopic cancer model, affording tumor growth suppression (2.5-fold drop) and downregulation of NFκB and VEGF (2.9- and 1.8-fold decrease, respectively), compared to Gen suspension. Antimetastatic efficacy and Bcl-2-downexpression was histologically confirmed. Our findings demonstrate the promising anticancer aptitude of HA/Gen-FO-Cub as an effective phytotherapeutic nanodelivery system for pancreatic cancer therapy.
ISSN:0378-5173
1873-3476
DOI:10.1016/j.ijpharm.2023.123637