Multicommodity max-flow min-cut theorems and their use in designing approximation algorithms

This paper establishes max-flow min-cut theorems for several important classes of multicommodity flow problems. In particular, it shows that for any n-node multicommodity flow problem with uniform demands, the max-flow for the problem is within an O(log n) factor of the upper bound implied by the mi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the ACM 1999-11, Vol.46 (6), p.787-832
Hauptverfasser: LEIGHTON, TOM, RAO, SATISH
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper establishes max-flow min-cut theorems for several important classes of multicommodity flow problems. In particular, it shows that for any n-node multicommodity flow problem with uniform demands, the max-flow for the problem is within an O(log n) factor of the upper bound implied by the min-cut. The result (which is essentially optimal) establishes an important analogue of the famous 1-commodity max-flow min-cut theorem for problems with multiple commodities. The result also has substantial applications to the field of approximation algorithms.
ISSN:0004-5411
1557-735X
DOI:10.1145/331524.331526