Carboxyl position-directed structure diversity in zirconium-tricarboxylate frameworks

Herein, three tritopic carboxylic acids were used to construct three Zr-MOFs, HIAM-4033, HIAM-4034, and HIAM-4035, to investigate the effect of carboxyl position on the MOF structures. The results showed that HIAM-4033 and HIAM-4034 possess (3,9)-c models with different underlying nets, whereas HIAM...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Dalton transactions : an international journal of inorganic chemistry 2023-12, Vol.52 (47), p.17679-17683
Hauptverfasser: Xia, Jun, Si, Jincheng, Zhou, Kang, Xia, Hai-Lun, Zhang, Jian, Xu, Yingqian, Wang, Lei, Liu, Xiao-Yuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Herein, three tritopic carboxylic acids were used to construct three Zr-MOFs, HIAM-4033, HIAM-4034, and HIAM-4035, to investigate the effect of carboxyl position on the MOF structures. The results showed that HIAM-4033 and HIAM-4034 possess (3,9)-c models with different underlying nets, whereas HIAM-4035 exhibits the same underlying net as UiO-68. Nanosized HIAM-4033 exhibits excellent sensitivity and selectivity for detecting aromatic acids, such as benzoic acid and 2-fluorobenzoic acid, compared with aliphatic acids and inorganic acids. This study offers new insights into achieving an organic linker directed structure evolution of Zr-MOFs, which might facilitate the discovery of unprecedented underlying nets. Zr-MOFs with different topologies were constructed by changing carboxyl group positions on thiophene moiety of tritopic carboxylic acids, which provides new insights into investigating organic linker directed structure evolution of Zr-MOFs.
ISSN:1477-9226
1477-9234
DOI:10.1039/d3dt03348a